13 research outputs found

    Topics in QCD at Nonzero Temperature and Density

    Get PDF
    Understanding the behavior of matter at ultra-high density such as neutron stars require the knowledge of ground state properties of Quantum chromodynamics (QCD) at finite chemical potential. However, this task has turned out to be very difficult because of two main reasons: 1) QCD may still be strongly coupled at those regimes making perturbative calculations unreliable and 2) QCD at finite density suffers from the sign problem that makes the use of lattice simulation problematic and it even affects phenomenological models. In the first part of this thesis, we show that the sign problem in analytical calculations of finite density models can be solved by considering the \textit{CK}-symmetric, where \textit{C} is charge conjugation and \textit{K} is complex conjugation, complex saddle points of the effective action. We then explore the properties and consequences of such complex saddle points at non-zero temperature and density. Due to \textit{CK} symmetry, the mass matrix eigenvalues in these models are not always real but can be complex, which results in damped oscillation of the density-density correlation function, a new feature of finite density models. To address the generality of such behavior, we next consider a lattice model of QCD with static quarks at strong-coupling. Computation of the mass spectrum confirms the existence of complex eigenvalues in much of temperature-chemical potential plane. This provides an independent confirmation of our results obtained using phenomenological models of QCD. The existence of regions in parameter space where density-density correlation function exhibit damped oscillation is one of the hallmarks of typical liquid-gas system. The formalism developed to tackle the sign problem in QCD models actually gives a simple understanding for the existence of such behavior in liquid-gas system. To this end, we develop a generic field theoretic model for the treatment of liquid-gas phase transition. An effective field theory at finite density derived from a fundamental four dimensional field theory turns out to be complex but \textit{CK} symmetric. The existence of \textit{CK} symmetry results in complex mass eigenvalues, which in turn leads to damped oscillatory behavior of the density-density correlation function. In the last part of this thesis, we study the effect of large amplitude density oscillations on the transport properties of superfluid nuclear matter. In nuclear matter at neutron-star densities and temperature, Cooper pairing leads to the formations of a gap in the nucleon excitation spectra resulting in exponentially strong Boltzmann suppression of many transport coefficients. Previous calculations have shown evidence that density oscillations of sufficiently large amplitude can overcome this suppression for flavor-changing β\beta processes via the mechanism of ``gap-bridging . We address the simplifications made in that initial work, and show that gap bridging can counteract Boltzmann suppression of neutrino emissivity for the realistic case of modified Urca processes in matter with 3P2^3P_2 neutron pairing

    Complex saddle points in QCD at finite temperature and density

    Full text link
    The sign problem in QCD at finite temperature and density leads naturally to the consideration of complex saddle points of the action or effective action. The global symmetry CK\mathcal{CK} of the finite-density action, where C\mathcal{C} is charge conjugation and K\mathcal{K} is complex conjugation, constrains the eigenvalues of the Polyakov loop operator PP at a saddle point in such a way that the action is real at a saddle point, and net color charge is zero. The values of TrFPTr_{F}P and TrFP†Tr_{F}P^{\dagger} at the saddle point, are real but not identical, indicating the different free energy cost associated with inserting a heavy quark versus an antiquark into the system. At such complex saddle points, the mass matrix associated with Polyakov loops may have complex eigenvalues, reflecting oscillatory behavior in color-charge densities. We illustrate these properties with a simple model which includes the one-loop contribution of gluons and massless quarks moving in a constant Polyakov loop background. Confinement-deconfinement effects are modeled phenomenologically via an added potential term depending on the Polyakov loop eigenvalues. For sufficiently large TT and μ\mu, the results obtained reduce to those of perturbation theory at the complex saddle point. These results may be experimentally relevant for the CBM experiment at FAIR.Comment: 13 pages, 3 figures. Additional references and minor revision

    Complex Saddle Points and Disorder Lines in QCD at finite temperature and density

    Full text link
    The properties and consequences of complex saddle points are explored in phenomenological models of QCD at non-zero temperature and density. Such saddle points are a consequence of the sign problem, and should be considered in both theoretical calculations and lattice simulations. Although saddle points in finite-density QCD are typically in the complex plane, they are constrained by a symmetry that simplifies analysis. We model the effective potential for Polyakov loops using two different potential terms for confinement effects, and consider three different cases for quarks: very heavy quarks, massless quarks without modeling of chiral symmetry breaking effects, and light quarks with both deconfinement and chiral symmetry restoration effects included in a pair of PNJL models. In all cases, we find that a single dominant complex saddle point is required for a consistent description of the model. This saddle point is generally not far from the real axis; the most easily noticed effect is a difference between the Polyakov loop expectation values ⟨TrFP⟩\left\langle {\rm Tr}_{F}P\right\rangle and ⟨TrFP†⟩\left\langle {\rm Tr}_{F}P^{\dagger}\right\rangle , and that is confined to small region in the μ−T\mu-T plane. In all but one case, a disorder line is found in the region of critical and/or crossover behavior. The disorder line marks the boundary between exponential decay and sinusoidally modulated exponential decay of correlation functions. Disorder line effects are potentially observable in both simulation and experiment. Precision simulations of QCD in the μ−T\mu-T plane have the potential to clearly discriminate between different models of confinement.Comment: 33 pages, 20 figure

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    Get PDF
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42\ub74% vs 44\ub72%; absolute difference \u20131\ub769 [\u20139\ub758 to 6\ub711] p=0\ub767; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5\u20138] vs 6 [5\u20138] cm H2O; p=0\ub70011). ICU mortality was higher in MICs than in HICs (30\ub75% vs 19\ub79%; p=0\ub70004; adjusted effect 16\ub741% [95% CI 9\ub752\u201323\ub752]; p<0\ub70001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0\ub780 [95% CI 0\ub775\u20130\ub786]; p<0\ub70001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status. Funding: No funding

    Complex saddle points in finite-density QCD

    No full text
    Nishimura H, Ogilvie MC, Pangeni K. Complex saddle points in finite-density QCD. In: Proceedings, 9th International Workshop on Critical Point and Onset of Deconfinement (CPOD 2014): Bielefeld, Germany, November 17-21, 2014. PoS; 2015.We consider complex saddle points in QCD at finite temperature and density,which are constrained by symmetry under charge and complex conjugations. Thisapproach naturally incorporates color neutrality, and the Polyakov loop and theconjugate loop at the saddle point are real but not identical. Moreover, it cangive rise to a complex mass matrix associated with the Polyakov loops,reflecting oscillatory behavior in color-charge densities. This aspect of thephase structure appears to be sensitive to the origin of confinement, asmodeled in the effective potential

    Management of pulmonary alveolar proteinosis with whole lung lavage using extracorporeal membrane oxygenation support in a postrenal transplant patient with graft failure

    No full text
    Pulmonary alveolar proteinosis (PAP) is a rare lung disease characterized by accumulation of excessive lung surfactant in the alveoli leading to restrictive lung functions and impaired gas exchange. Whole lung lavage (WLL) is the treatment modality of choice, which is usually performed using double lumen endobronchial tube insertion under general anesthesia and alternating unilateral lung ventilation and washing with normal saline. It may be difficult to perform WLL in patients with severe hypoxemia wherein patients do not tolerate single lung ventilation. Extracorporeal membrane oxygenation support (ECMO) has been used in such patients. We report a patient with autoimmune PAP following renal transplant who presented with marked hypoxemia and was managed by WLL under ECMO support
    corecore