433 research outputs found

    Prolonged membrane potential depolarization in cingulate pyramidal cells after digit amputation in adult rats

    Get PDF
    The anterior cingulate cortex (ACC) plays an important role in higher brain functions including learning, memory, and persistent pain. Long-term potentiation of excitatory synaptic transmission has been observed in the ACC after digit amputation, which might contribute to plastic changes associated with the phantom pain. Here we report a long-lasting membrane potential depolarization in ACC neurons of adult rats after digit amputation in vivo. Shortly after digit amputation of the hind paw, the membrane potential of intracellularly recorded ACC neurons quickly depolarized from ~-70 mV to ~-15 mV and then slowly repolarized. The duration of this amputation-induced depolarization was about 40 min. Intracellular staining revealed that these neurons were pyramidal neurons in the ACC. The depolarization is activity-dependent, since peripheral application of lidocaine significantly reduced it. Furthermore, the depolarization was significantly reduced by a NMDA receptor antagonist MK-801. Our results provide direct in vivo electrophysiological evidence that ACC pyramidal cells undergo rapid and prolonged depolarization after digit amputation, and the amputation-induced depolarization in ACC neurons might be associated with the synaptic mechanisms for phantom pain

    Alterations in prefrontal-limbic functional activation and connectivity in chronic stress-induced visceral hyperalgesia.

    Get PDF
    Repeated water avoidance stress (WAS) induces sustained visceral hyperalgesia (VH) in rats measured as enhanced visceromotor response to colorectal distension (CRD). This model incorporates two characteristic features of human irritable bowel syndrome (IBS), VH and a prominent role of stress in the onset and exacerbation of IBS symptoms. Little is known regarding central mechanisms underlying the stress-induced VH. Here, we applied an autoradiographic perfusion method to map regional and network-level neural correlates of VH. Adult male rats were exposed to WAS or sham treatment for 1 hour/day for 10 days. The visceromotor response was measured before and after the treatment. Cerebral blood flow (CBF) mapping was performed by intravenous injection of radiotracer ([(14)C]-iodoantipyrine) while the rat was receiving a 60-mmHg CRD or no distension. Regional CBF-related tissue radioactivity was quantified in autoradiographic images of brain slices and analyzed in 3-dimensionally reconstructed brains with statistical parametric mapping. Compared to sham rats, stressed rats showed VH in association with greater CRD-evoked activation in the insular cortex, amygdala, and hypothalamus, but reduced activation in the prelimbic area (PrL) of prefrontal cortex. We constrained results of seed correlation analysis by known structural connectivity of the PrL to generate structurally linked functional connectivity (SLFC) of the PrL. Dramatic differences in the SLFC of PrL were noted between stressed and sham rats under distension. In particular, sham rats showed negative correlation between the PrL and amygdala, which was absent in stressed rats. The altered pattern of functional brain activation is in general agreement with that observed in IBS patients in human brain imaging studies, providing further support for the face and construct validity of the WAS model for IBS. The absence of prefrontal cortex-amygdala anticorrelation in stressed rats is consistent with the notion that impaired corticolimbic modulation acts as a central mechanism underlying stress-induced VH

    Does Osmotic Stress Affect Natural Product Expression in Fungi?

    Get PDF
    Acknowledgments: Russell Kerr acknowledges the assistance of Nadia Prigoda-Lee, Marius Grote, Kate McQuillan and Stephanie Duffy, and generous financial support from NSERC, the Canada Research Chair program, the Jeanne and Jean-Louis Lévesque Foundation and the Atlantic Canada Opportunities Agency. Ka-Lai Pang thanks the president of National Taiwan Ocean University, Ching-Fong Chang, for a special fund to attend the workshop held in Charlottetown, Canada in 2014 where this work was discussed. Rob Capon and Zhuo Shang acknowledge support from the University of Queensland, and the UQ Institute for Molecular Bioscience. Zhuo Shang acknowledges the provision of an International Postgraduate Research Scholarship (IPRS) and a Centennial Scholarship by the University of Queensland. Catherine Roullier acknowledges the assistance of Marie-Claude Boumard and Thibaut Robiou du Pont, and support from Region Pays de la Loire, FrancePeer reviewedPublisher PD

    A statistical reconstruction algorithm for positronium lifetime imaging using time-of-flight positron emission tomography

    Full text link
    Positron emission tomography (PET) has been widely used for the diagnosis of serious diseases including cancer and Alzheimer's disease, based on the uptake of radiolabelled molecules that target certain pathological signatures. Recently, a novel imaging mode known as positronium lifetime imaging (PLI) has been shown possible with time-of-flight (TOF) PET as well. PLI is also of practical interest because it can provide complementary disease information reflecting conditions of the tissue microenvironment via mechanisms that are independent of tracer uptake. However, for the present practical systems that have a finite TOF resolution, the PLI reconstruction problem has yet to be fully formulated for the development of accurate reconstruction algorithms. This paper addresses this challenge by developing a statistical model for the PLI data and deriving from it a maximum-likelihood algorithm for reconstructing lifetime images alongside the uptake images. By using realistic computer simulation data, we show that the proposed algorithm can produce quantitatively accurate lifetime images.Comment: Submitted to IEEE-TPRM

    Comprehensive analysis on the magnetic field error of a K–Rb–21Ne comagnetometer with low-frequency bias magnetic field sensitivity

    Get PDF
    The spin-exchange relaxation-free comagnetometer (SERFC) is of important research value compared to existing high-precision gyroscopes because of its extremely high theoretical limit sensitivity and long-term stability, in which one significant limiting factor is the magnetic field error. First, the relationship between the magnetic field gradient and the nuclear spin relaxation mechanism is introduced into the frequency response and steady-state response models of SERFC. Then, a novel method for suppression of the low-frequency magnetic field error based on the modified bias magnetic field sensitivity model is proposed. Finally, the effectiveness of the proposed suppression methods is demonstrated by optimizing the cell temperature, pump light power, and compensation magnetic field gradient to increase the suppression factor by 72.19%, 20.24%, and 69.86%, and the corresponding bias instability increased by 55.41%, 20.84%, and 27.63%, respectively. This study contributes to improving the long-term zero bias stability of the SERFC

    Functional Characterization of Olfactory Proteins Involved in Chemoreception of Galeruca daurica

    Get PDF
    Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) play a fundamental role in insect olfaction. Galeruca daurica (Joannis) is a new pest with outbreak status in the Inner Mongolia grasslands, northern China. In this study, six olfactory protein genes (GdauOBP1, GdauOBP6, GdauOBP10, GdauOBP15, GdauCSP4, and GdauCSP5) were cloned by RACE and expressed by constructing a prokaryotic expression system. Their binding affinities to 13 compounds from host volatiles (Allium mongolicum) were determined by fluorescence-binding assay. In order to further explore the olfactory functions of GdauOBP15 and GdauCSP5, RNA interference (RNAi) and electroantennogram (EAG) experiments were conducted. Ligand-binding assays showed that the binding properties of the six recombinant proteins to the tested volatiles were different. GdauOBP6, GdauOBP15, GdauCSP4, and GdauCSP5 could bind several tested ligands of host plants. It was suspected that GdauOBP6, GdauOBP15, GdauCSP4, and GdauCSP5 were related to the host location in G. daurica. We also found that there were different EAG responses between males and females when the GdauOBP15 and GdauCSP5 genes were silenced by RNAi. The EAG response of G. daurica females to 2-hexenal was significantly decreased in dsRNA-OBP15-injected treatment compared to the control, and the dsRNA-CSP5-treated females significantly reduced EAG response to eight tested host volatiles (1,3-dithiane, 2-hexenal, methyl benzoate, dimethyl trisulfide, myrcene, hexanal, 1,3,5-cycloheptatriene, and p-xylene). However, the EAG response had no significant difference in males. Both GdauOBP15 and GdauCSP5 may have different functions between males and females in G. daurica and may play more important roles in females searching for host plants

    A clinical epidemiology and molecular attribution evaluation of adenoviruses in pediatric acute gastroenteritis: A case-control study

    Get PDF
    The objective of this study was to characterize the etiological role of human adenovirus (HAdV) serotypes in pediatric gastroenteritis. Using a case-control design, we compared the frequencies of HAdV serotypes between children with ≥3 episodes of vomiting or diarrhea within 24 h and \u3c7 days of symptoms (i.e., cases) and those with no infectious symptoms (i.e., controls). Stool samples and/or rectal swabs underwent molecular serotyping with cycle threshold (Ct) values provided by multiplex real-time reverse transcription-PCR testing. Cases without respiratory symptoms were analyzed to calculate the proportion of disease attributed to individual HAdV serotypes (i.e., attributable fraction). Between December 2014 and August 2018, adenoviruses were detected in 18.8% (629/3,347) of cases and 7.2% (97/1,355) of controls, a difference of 11.6% (95% confidence interval [CI], 9.6%, 13.5%). In 96% (95% CI, 92 to 98%) of HAdV F40/41 detections, the symptoms could be attributed to the identified serotype; when serotypes C1, C2, C5, and C6 were detected, they were responsible for symptoms in 52% (95% CI, 12 to 73%). Ct values were lower among cases than among controls

    Successive modification of polydentate complexes gives access to planar carbon-and nitrogen-based ligands

    Get PDF
    以碳和氮为键合原子的多齿螯合物是配合物家族中非常重要的一类。具有更高齿数的平面构型NC螯合物实例相对较少,代表性的例子为四齿金属碳卟啉类化合物,这类螯合物以其独特的结构和丰富的物理化学性质引起广泛关注。然而平面五齿、六齿的NC螯合物由于几何构型“拥挤”导致合成难度高,该工作从含三元环内金属卡宾结构的CCCC型碳龙配合物出发,利用经典有机反应(炔烃对金属卡宾的插入反应),成功地实现了CCCCN/NCCCN型平面五齿螯合物的合成。这一研究为高配位型螯合物的合成提供了新思路并为平面五齿螯合物家族添加新成员。特别是,这些高配位型螯合物在可见光和近红外区域均有较好的吸收,表现出良好的光声成像、光热转换及声动力学性能。 该研究工作在张弘教授指导下完成,第一作者为iChEM博士后周小茜。该工作充分体现了多学科协同研究优势:相关化合物的合成、表征及理论计算工作由周小茜博士完成;声动力学性能研究由厦门大学公共卫生学院庞鑫博士及刘刚教授完成;光声成像研究由厦门大学公共卫生学院聂立铭教授完成。iChEM fellow卓庆德博士、博士生卓凯玥、陈志昕参与了部分实验工作。夏海平教授、香港科技大学林振阳教授和南京大学朱从青教授对研究工作给予了大力支持。【Abstract】Polydentate complexes containing combinations of nitrogen and carbon (N and C) ligating atoms are among the most fundamental and ubiquitous molecules in coordination chemistry, yet the formation of such complexes with planar high-coordinate N/C sites remains challenging. Herein, we demonstrate an efficient route to access related complexes with tetradentate CCCN and pentadentate CCCCN and NCCCN cores by successive modification of the coordinating atoms in complexes with a CCCC core. Combined experimental and computational studies reveal that the rich reactivity of metal-carbon bonds and the inherent aromaticity of the metallacyclic skeletons play key roles in these transformations. This strategy addresses the paucity of synthetic approaches to mixed N/C planar pentadentate chelating species and provides valuable insights into the synthesis of carbon-based high-coordinate complexes. Furthermore, the resulting complexes are the examples of organometallic species with combined photoacoustic, photothermal, and sonodynamic properties, which makes them promising for application in related areas.This research was supported by the National Natural Science Foundation of China (Nos. 21572185, 21561162001, and 81571744), the Research Grants Council of Hong Kong (N_HKUST603/15), the Excellent Youth Foundation of Fujian Scientific Committee (2018J06024), and the Fundamental Research Funds for the Central Universities (20720170065).该工作得到国家自然科学基金委、香港研究资助局、福建省自然科学基金、厦门大学校长基金的资助
    corecore