1,255 research outputs found
Green Synthesis of Magnetite Nanoparticles (via Thermal Decomposition Method) with Controllable Size and Shape
Magnetite (Fe3O4) nanoparticles with controllable size and shape were synthesized by the thermal decomposition method. In contrast to previously reported thermal decomposition methods, our synthesis method had utilized a much cheaper and less toxic iron precursor, iron acetylacetonate (Fe(acac)3), and environmentally benign and non-toxic polyethylene oxide (PEO) was being used as the solvent and surfactant simultaneously. Fe3O4 nanoparticles of controllable size and shape were prepared by manipulating the synthesis parameters such as precursor concentrations, reaction durations and surfactants
Generalized camera calibration model for trapezoidal patterns on the road
published_or_final_versio
A multiplex-multicast scheme that improves system capacity of voice-over-IP on wireless LAN by 100%
Voice-over-IP (VoIP) is.an important application on the Internet. With the emergence of WLAN technology and its various advantages compared with the traditional wired LAN, it is fast becoming the 'last-mile' of choice for the overall Internet infrastructure. This work considers the support of VoIP over 802.11b WLAN. We show that although the raw WLAN capacity can potentially support more than 500 VoIP sessions, various overheads bring this down to only 12 VoIP sessions when using GSM 6.10 codec. We propose a novel multiplexing scheme for VoIP which exploits multicasting over WLAN for the downlink VoIP traffic. This scheme can achieve nearly 100% improvement in system capacity. In addition, we present results showing that the delay and delay jitter introduced by the proposed scheme are small. We believe that the scheme can reduce the blocking probability of VoIP sessions in an enterprise WLAN significantly.published_or_final_versio
Real-Time Estimation of Lane-to-Lane Turning Flows at Isolated Signalized Junctions
published_or_final_versio
Enhanced therapeutic efficacy of transarterial chemoembolisation treatment in hepatocelluar carcinoma (HCC) by mTOR inhibitor RAD001: implication for a novel treatment regimen in HCC
Oral Presentationpublished_or_final_versionThe 16th Medical Research Conference, Department of Medicine, the University of Hong Kong, Hong Kong, 22 January 2011. In Hong Kong Medical Journal, 2011, v. 17 n. 1, suppl. 1, p. 25, abstract no. 3
Effects of treatment of acromegaly with Sandostatin® LAR® on lipolytic enzymes and cholesteryl ester transfer protein activities
published_or_final_versio
Analysis of investigation of undergraduate nurse's critical thinking
2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Over-expression of miR-106b promotes cell migration and metastasis in hepatocellular carcinoma by activating epithelial-mesenchymal transition process
Hepatocellular carcinoma (HCC) is one the the most fatal cancers worldwide. The poor prognosis of HCC is mainly due to the developement of distance metastasis. To investigate the mechanism of metastasis in HCC, an orthotopic HCC metastasis animal model was established. Two sets of primary liver tumor cell lines and corresponding lung metastasis cell lines were generated. In vitro functional analysis demonstrated that the metastatic cell line had higher invasion and migration ability when compared with the primary liver tumor cell line. These cell lines were subjected to microRNA (miRNAs) microarray analysis to identify differentially expressed miRNAs which were associated with the developement of metastasis in vivo. Fifteen human miRNAs, including miR-106b, were differentially expressed in 2 metastatic cell lines compared with the primary tumor cell lines. The clinical significance of miR-106b in 99 HCC clinical samples was studied. The results demonstrated that miR-106b was over-expressed in HCC tumor tissue compared with adjacent non-tumor tissue (p = 0.0005), and overexpression of miR-106b was signficantly correlated with higher tumor grade (p = 0.018). Further functional studies demonstrated that miR-106b could promote cell migration and stress fiber formation by over-expressing RhoGTPases, RhoA and RhoC. In vivo functional studies also showed that over-expression of miR-106b promoted HCC metastasis. These effects were related to the activation of the epithelial-mesenchymal transition (EMT) process. Our results suggested that miR-106b expression contributed to HCC metastasis by activating the EMT process promoting cell migration in vitro and metastasis in vivo. © 2013 Yau et al.published_or_final_versio
Preparation and characterization of in situ polymerized cyclic butylene terephthalate/graphene nanocomposites
Graphene reinforced cyclic butylene terephthalate (CBT) matrix nanocomposites were prepared and characterized by mechanical and thermal methods. These nanocomposites containing different amounts of graphene (up to 5 wt%) were prepared by melt mixing with CBT that was polymerized in situ during a subsequent hot pressing. The nanocomposites and the neat polymerized CBT (pCBT) as reference material were subjected to differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), thermogravimetrical analysis (TGA) and heat conductivity measurements. The dispersion of the grapheme nanoplatelets was characterized by transmission electron microscopy (TEM). It was established that the partly exfoliated graphene worked as nucleating agent for crystallization, acted as very efficient reinforcing agent (the storage modulus at room temperature was increased by 39 and 89% by incorporating 1 and 5 wt.% graphene, respectively). Graphene incorporation markedly enhanced the heat conductivity but did not influence the TGA behaviour due to the not proper exfoliation except the ash content
- …