72 research outputs found

    Tissue-based next generation sequencing: application in a universal healthcare system

    Get PDF
    In the context of solid tumours, the evolution of cancer therapies to more targeted and nuanced approaches has led to the impetus for personalised medicine. The targets for these therapies are largely based on the driving genetic mutations of the tumours. To track these multiple driving mutations the use of next generation sequencing (NGS) coupled with a morphomolecular approach to tumours, has the potential to deliver on the promises of personalised medicine. A review of NGS and its application in a universal healthcare (UHC) setting is undertaken as the technology has a wide appeal and utility in diagnostic, clinical trial and research paradigms. Furthermore, we suggest that these can be accommodated with a unified integromic approach. Challenges remain in bringing NGS to routine clinical use and these include validation, handling of the large amounts of information flow and production of a clinically useful report. These challenges are particularly acute in the setting of UHC where tests are not reimbursed and there are finite resources available. It is our opinion that the challenges faced in applying NGS in a UHC setting are surmountable and we outline our approach for its routine application in diagnostic, clinical trial and research paradigms

    Interleukin-1β Produced in Response to Islet Autoantigen Presentation Differentiates T-Helper 17 Cells at the Expense of Regulatory T-Cells: Implications for the Timing of Tolerizing Immunotherapy

    Get PDF
    OBJECTIVE-The effectiveness of tolerizing immunotherapeutic strategies, such as anti-CD40L or dendritic cells (DCs), is greater when administered to young nonobese diabetic (NOD) mice than at peak insulitis. RelB(lo) DCs, generated in the presence of an nuclear factor-kappa B inhibitor, induce T-regulatory (Treg) cells and suppress inflammation in a model of rheumatoid arthritis. Interleukin (IL)-1 beta is overexpressed in humans and mice at risk of type 1 diabetes, dysregulates Treg cells, and accelerates diabetes in NOD mice. We investigated the relationship between IL-1 beta production and the response to RelB(lo) DCs in the prediabetic period

    An overview of existing and new nuclear and astrophysical constraints on the equation of state of neutron-rich dense matter

    Full text link
    Through continuous progress in nuclear theory and experiment and an increasing number of neutron-star observations, a multitude of information about the equation of state (EOS) for matter at extreme densities is available. Here, we apply these different pieces of data individually to a broad set of physics-agnostic candidate EOSs and analyze the resulting constraints. Specifically, we make use of information from chiral effective field theory, perturbative quantum chromodynamics, as well as data from heavy-ion collisions and the PREX-II and CREX experiments. We also investigate the impact of current mass and radius measurements of neutron stars, such as radio timing measurements of heavy pulsars, NICER data, and other X-ray observations. We augment these by reanalyses of the gravitational-wave (GW) signal GW170817, its associated kilonova AT2017gfo and gamma-ray burst afterglow, the GW signal GW190425, and the GRB211211A afterglow, where we use improved models for the tidal waveform and kilonova light curves. Additionally, we consider the postmerger fate of GW170817 and its consequences for the EOS. This large and diverse set of constraints is eventually combined in numerous ways to explore limits on quantities such as the typical neutron-star radius, the maximum neutron-star mass, the nuclear symmetry-energy parameters, and the speed of sound. Based on the priors from our EOS candidate set, we find the radius of the canonical 1.4 M_\odot neutron star to be R1.4=12.270.94+0.83R_{1.4}= 12.27_{-0.94}^{+0.83} km and the TOV mass MTOV=2.260.22+0.45M_{\rm TOV}= 2.26_{-0.22}^{+0.45} M_\odot at 95% credibility, when including those constraints where systematic uncertainties are deemed small. A less conservative approach, combining all the presented constraints, similarly yields R1.4=12.200.50+0.53R_{1.4}= 12.20_{-0.50}^{+0.53} km and MTOV=2.310.20+0.08M_{\rm TOV}= 2.31_{-0.20}^{+0.08} M_\odot.Comment: 49 pages, 32 figures, webinterface for custom constraint combinations in https://enlil.gw.physik.uni-potsdam.de/eos_constraint

    Molecular profiling of signet ring cell colorectal cancer provides a strong rationale for genomic targeted and immune checkpoint inhibitor therapies

    Get PDF
    We would like to thank all patients whose samples were used in this study. We are also thankful to the Northern Ireland Biobank and Grampian Biorepository for providing us with tissue blocks and patient data; and Dr HG Coleman (Queen’s University Belfast) for her advice on statistical analyses. This work has been carried out with financial support from Cancer Research UK (grant: C11512/A18067), Experimental Cancer Medicine Centre Network (grant: C36697/A15590 from Cancer Research UK and the NI Health and Social Care Research and Development Division), the Sean Crummey Memorial Fund and the Tom Simms Memorial Fund. The Northern Ireland Biobank is funded by HSC Research and Development Division of the Public Health Agency in Northern Ireland and Cancer Research UK through the Belfast CRUK Centre and the Northern Ireland Experimental Cancer Medicine Centre; additional support was received from Friends of the Cancer Centre. The Northern Ireland Molecular Pathology Laboratory which is responsible for creating resources for the Northern Ireland Biobank has received funding from Cancer Research UK, Friends of the Cancer Centre and Sean Crummey Foundation.Peer reviewedPublisher PD

    Engaging stakeholders to level up COPD care in LMICs:lessons learned from the "Breathe Well" programme in Brazil, China, Georgia, and North Macedonia

    Get PDF
    BACKGROUND: Effective stakeholder engagement in health research is increasingly being recognised and promoted as an important pathway to closing the gap between knowledge production and its use in health systems. However, little is known about its process and impacts, particularly in low-and middle-income countries. This opinion piece draws on the stakeholder engagement experiences from a global health research programme on Chronic Obstructive Pulmonary Disease (COPD) led by clinician researchers in Brazil, China, Georgia and North Macedonia, and presents the process, outcomes and lessons learned.MAIN BODY: Each country team was supported with an overarching engagement protocol and mentored to develop a tailored plan. Patient involvement in research was previously limited in all countries, requiring intensive efforts through personal communication, meetings, advisory groups and social media. Accredited training programmes were effective incentives for participation from healthcare providers; and aligning research findings with competing policy priorities enabled interest and dialogue with decision-makers. The COVID-19 pandemic severely limited possibilities for planned engagement, although remote methods were used where possible. Planned and persistent engagement contributed to shared knowledge and commitment to change, including raised patient and public awareness about COPD, improved skills and practice of healthcare providers, increased interest and support from clinical leaders, and dialogue for integrating COPD services into national policy and practice.CONCLUSION: Stakeholder engagement enabled relevant local actors to produce and utilise knowledge for small wins such as improving day-to-day practice and for long-term goals of equitable access to COPD care. For it to be successful and sustained, stakeholder engagement needs to be valued and integrated throughout the research and knowledge generation process, complete with dedicated resources, contextualised and flexible planning, and commitment.</p

    E2F5 status significantly improves malignancy diagnosis of epithelial ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovarian epithelial cancer (OEC) usually presents in the later stages of the disease. Factors, especially those associated with cell-cycle genes, affecting the genesis and tumour progression for ovarian cancer are largely unknown. We hypothesized that over-expressed transcription factors (TFs), as well as those that are driving the expression of the OEC over-expressed genes, could be the key for OEC genesis and potentially useful tissue and serum markers for malignancy associated with OEC.</p> <p>Methods</p> <p>Using a combination of computational (selection of candidate TF markers and malignancy prediction) and experimental approaches (tissue microarray and western blotting on patient samples) we identified and evaluated E2F5 transcription factor involved in cell proliferation, as a promising candidate regulatory target in early stage disease. Our hypothesis was supported by our tissue array experiments that showed E2F5 expression only in OEC samples but not in normal and benign tissues, and by significantly positively biased expression in serum samples done using western blotting studies.</p> <p>Results</p> <p>Analysis of clinical cases shows that of the E2F5 status is characteristic for a different population group than one covered by CA125, a conventional OEC biomarker. E2F5 used in different combinations with CA125 for distinguishing malignant cyst from benign cyst shows that the presence of CA125 or E2F5 increases sensitivity of OEC detection to 97.9% (an increase from 87.5% if only CA125 is used) and, more importantly, the presence of both CA125 and E2F5 increases specificity of OEC to 72.5% (an increase from 55% if only CA125 is used). This significantly improved accuracy suggests possibility of an improved diagnostics of OEC. Furthermore, detection of malignancy status in 86 cases (38 benign, 48 early and late OEC) shows that the use of E2F5 status in combination with other clinical characteristics allows for an improved detection of malignant cases with sensitivity, specificity, F-measure and accuracy of 97.92%, 97.37%, 97.92% and 97.67%, respectively.</p> <p>Conclusions</p> <p>Overall, our findings, in addition to opening a realistic possibility for improved OEC diagnosis, provide an indirect evidence that a cell-cycle regulatory protein E2F5 might play a significant role in OEC pathogenesis.</p

    CEACAM6 is upregulated by <i>Helicobacter pylori</i> CagA and is a biomarker for early gastric cancer

    Get PDF
    Early detection of gastric cancers saves lives, but remains a diagnostic challenge. In this study, we aimed to identify cell-surface biomarkers of early gastric cancer. We hypothesized that a subset of plasma membrane proteins induced by the Helicobacter pylori oncoprotein CagA will be retained in early gastric cancers through non-oncogene addiction. An inducible system for expression of CagA was used to identify differentially upregulated membrane protein transcripts in vitro. The top hits were then analyzed in gene expression datasets comparing transcriptome of gastric cancer with normal tissue, to focus on markers retained in cancer. Among the transcripts enriched upon CagA induction in vitro, a significant elevation of CEACAM6 was noted in gene expression datasets of gastric cancer. We used quantitative digital immunohistochemistry to measure CEACAM6 protein levels in tissue microarrays of gastric cancer. We demonstrate an increase in CEACAM6 in early gastric cancers, when compared to matched normal tissue, with an AUC of 0.83 for diagnostic validity. Finally, we show that a fluorescently conjugated CEACAM6 antibody binds avidly to freshly resected gastric cancer xenograft samples and can be detected by endoscopy in real time. Together, these results suggest that CEACAM6 upregulation is a cell surface response to H. pylori CagA, and is retained in early gastric cancers. They highlight a novel link between CEACAM6 expression and CagA in gastric cancer, and suggest CEACAM6 to be a promising biomarker to aid with the fluorescent endoscopic diagnosis of early neoplastic lesions in the stomach
    corecore