212 research outputs found

    What Pediatricians Should Know Before Studying Gut Microbiota

    Get PDF
    Billions of microorganisms, or "microbiota", inhabit the gut and affect its homeostasis, influencing, and sometimes causing if altered, a multitude of diseases. The genomes of the microbes that form the gut ecosystem should be summed to the human genome to form the hologenome due to their influence on human physiology; hence the term "microbiome" is commonly used to refer to the genetic make-up and gene-gene interactions of microbes. This review attempts to provide insight into this recently discovered vital organ of the human body, which has yet to be fully explored. We herein discuss the rhythm and shaping of the microbiome at birth and during the first years leading up to adolescence. Furthermore, important issues to consider for conducting a reliable microbiome study including study design, inclusion/exclusion criteria, sample collection, storage, and variability of different sampling methods as well as the basic terminology of molecular approaches, data analysis, and clinical interpretation of results are addressed. This basic knowledge aims to provide the pediatricians with a key tool to avoid data dispersion and pitfalls during child microbiota study

    Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases

    Get PDF
    In mammals, complex I (NADH-ubiquinone oxidoreductase) of the mitochondrial respiratory chain has 31 supernumerary subunits in addition to the 14 conserved from prokaryotes to humans. Multiplicity of structural protein components, as well as of biogenesis factors, makes complex I a sensible pace-maker of mitochondrial respiration. The work reviewed here shows that the cAMP/PKA pathway regulates the biogenesis, assembly and catalytic activity of complex I and mitochondrial oxygen superoxide production. The structural, functional and regulatory complexity of complex I, renders it particularly vulnerable to genetic and sporadic pathological factors. Complex I dysfunction has, indeed, been found, to be associated with several human diseases. Knowledge of the pathogenetic mechanisms of these diseases can help to develop new therapeutic strategies. (C) 2011 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved

    EasyPrimer: user-friendly tool for pan-PCR/HRM primers design. Development of an HRM protocol on wzi gene for fast Klebsiella pneumoniae typing

    Get PDF
    In this work we present EasyPrimer, a user-friendly online tool developed to assist pan-PCR and High Resolution Melting (HRM) primer design. The tool finds the most suitable regions for primer design in a gene alignment and returns a clear graphical representation of their positions on the consensus sequence. EasyPrimer is particularly useful in difficult contexts, e.g. on gene alignments of hundreds of sequences and/or on highly variable genes. HRM analysis is an emerging method for fast and cost saving bacterial typing and an HRM scheme of six primer pairs on five Multi-Locus Sequence Type (MLST) genes is already available for Klebsiella pneumoniae. We validated the tool designing a scheme of two HRM primer pairs on the hypervariable gene wzi of Klebsiella pneumoniae and compared the two schemes. The wzi scheme resulted to have a discriminatory power comparable to the HRM MLST scheme, using only one third of primer pairs. Then we successfully used the wzi HRM primer scheme to reconstruct a Klebsiella pneumoniae nosocomial outbreak in few hours. The use of hypervariable genes reduces the number of HRM primer pairs required for bacterial typing allowing to perform cost saving, large-scale surveillance programs

    Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases.

    Get PDF
    In mammals, complex I (NADH-ubiquinone oxidoreductase) of the mitochondrial respiratory chain has 31 supernumerary subunits in addition to the 14 conserved from prokaryotes to humans. Multiplicity of structural protein components, as well as of biogenesis factors, makes complex I a sensible pace-maker of mitochondrial respiration. The work reviewed here shows that the cAMP/PKA pathway regulates the biogenesis, assembly and catalytic activity of complex I and mitochondrial oxygen superoxide production. The structural, functional and regulatory complexity of complex I, renders it particularly vulnerable to genetic and sporadic pathological factors. Complex I dysfunction has, indeed, been found, to be associated with several human diseases. Knowledge of the pathogenetic mechanisms of these diseases can help to develop new therapeutic strategies. (C) 2011 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved

    Robotic milking technologies and renegotiating situated ethical relationships on UK dairy farms

    Get PDF
    Robotic or automatic milking systems (AMS) are novel technologies that take over the labor of dairy farming and reduce the need for human-animal interactions. Because robotic milking involves the replacement of 'conventional' twice-a-day milking managed by people with a system that supposedly allows cows the freedom to be milked automatically whenever they choose, some claim robotic milking has health and welfare benefits for cows, increases productivity, and has lifestyle advantages for dairy farmers. This paper examines how established ethical relations on dairy farms are unsettled by the intervention of a radically different technology such as AMS. The renegotiation of ethical relationships is thus an important dimension of how the actors involved are re-assembled around a new technology. The paper draws on in-depth research on UK dairy farms comparing those using conventional milking technologies with those using AMS. We explore the situated ethical relations that are negotiated in practice, focusing on the contingent and complex nature of human-animal-technology interactions. We show that ethical relations are situated and emergent, and that as the identities, roles, and subjectivities of humans and animals are unsettled through the intervention of a new technology, the ethical relations also shift. © 2013 Springer Science+Business Media Dordrecht

    Polarized monocyte response to cytokine stimulation

    Get PDF
    BACKGROUND: Mononuclear phagocytes (MPs) stand at the crossroads between the induction of acute inflammation to recruit and activate immune effector cells and the downmodulation of the inflammatory process to contain collateral damage. This decision is extensively modulated by the cytokine microenvironment, which includes a broad array of cytokines whose direct effect on MPs remains largely unexplored. Therefore, we tested whether polarized responses of MPs to pathogens are related to the influence of selected cytokines or represent a mandatory molecular switch through which most cytokines operate. RESULTS: Circulating CD14+ MPs were exposed to bacterial lipopolysaccharide (LPS) followed by exposure to an array of cytokines, chemokines and soluble factors involved in the immune response. Gene expression was studied by global transcript analysis. Two main classes of cytokines were identified that induced a classical or an alternative pathway of MP activation. Expression of genes affected by NFkappaB activation was most predictive of the two main classes, suggesting that this pathway is a fundamental target of cytokine regulation. As LPS itself induces a classical type of activation, the most dramatic modulation was observed toward the alternative pathway, suggesting that a broad array of cytokines may counteract the pro-inflammatory effects of bacterial components. CONCLUSIONS: This analysis is directly informative of the primary effect of individual cytokines on the early stages of LPS stimulation and, therefore, may be most informative of the way MP maturation may be polarized at the early stages of the immune response

    Corrigendum:“Dating the funerary use of caves in Liguria (northwestern Italy) from the Neolithic to historic times. Results from a large-scale AMS campaign on human skeletal series” [Quat. Int. 536 (2020) 30–44] (Quaternary International (2020) 536 (30–44), (S1040618219308857), (10.1016/j.quaint.2019.11.034))

    Get PDF
    In Appendix 1, and Supplementary Information Tables S1 and S2, the age class of individual [AC6726.4 (Prob. AC EIV BB)/ACN 030] is indicated as “adolescent”; the correct age class is “adult”. In Appendix 1, and Supplementary Information Tables S1 and S2, the age class of individual [AC V BB/ACN 031] is indicated as “adult”; the correct age class is “adolescent”, as also discussed in the text. The mistake does not change the results in Table 4

    Potency analysis of cellular therapies: the emerging role of molecular assays

    Get PDF
    Potency testing is an important part of the evaluation of cellular therapy products. Potency assays are quantitative measures of a product-specific biological activity that is linked to a relevant biological property and, ideally, a product's in vivo mechanism of action. Both in vivo and in vitro assays can be used for potency testing. Since there is often a limited period of time between the completion of production and the release from the laboratory for administration to the patient, in vitro assays such are flow cytometry, ELISA, and cytotoxicity are typically used. Better potency assays are needed to assess the complex and multiple functions of cellular therapy products, some of which are not well understood. Gene expression profiling using microarray technology has been widely and effectively used to assess changes of cells in response to stimuli and to classify cancers. Preliminary studies have shown that the expression of noncoding microRNA which play an important role in cellular development, differentiation, metabolism and signal transduction can distinguish different types of stem cells and leukocytes. Both gene and microRNA expression profiling have the potential to be important tools for testing the potency of cellular therapies. Potency testing, the complexities associated with potency testing of cellular therapies, and the potential role of gene and microRNA expression microarrays in potency testing of cellular therapies is discussed

    Dating the funerary use of caves in Liguria (northwestern Italy) from the Neolithic to historic times:Results from a large-scale AMS campaign on human skeletal series

    Get PDF
    The multidisciplinary research team of this new project aimed at the chronological, anthropological and funerary behavior characterization of the skeletal remains unearthed from various caves in western Liguria (northwestern Italy) between the mid-1800s and the 1990s. Most of the burials and scattered bone assemblages were excavated prior to the development of modern stratigraphic methods, or come from disturbed contexts, often resulting in a vague chrono-cultural attribution. We present here the results of a systematic dating project that produced 130 new AMS dates on human bone samples (documented burials or individuals from scattered remains) from sixteen Ligurian caves, including most of the skeletal series from renowned sites such as Arene Candide Cave and Grotta Pollera. Results highlighted the funerary use of these caves from the last quarter of the sixth millennium BCE to the Common Era, with the majority of results clustering in the first half of the fifth millennium BCE. These dates allow for an initial assessment of patterns in Neolithic mortuary use of Ligurian caves, and aided in particular the characterization of funerary practices during the Square Mouthed Pottery culture

    Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Although systemic T-cell responses against tumor antigens and tumor infiltration by T cells have been investigated in colorectal cancer (CRC), the initiation of spontaneous immune responses <it>in situ </it>is not well understood. Macrophages and dendritic cells (DC) play an important role as a link between innate and adaptive immune response. The aim of the present study was to analyze macrophage and DC infiltration in CRC and to investigate whether there is a correlation to systemic T-cell response, regulatory T cell (Treg) infiltration, and survival.</p> <p>Methods</p> <p>Immunohistological staining was performed with nine markers for macrophages and DC (CD68, CD163, S100, CD11c, CD208, CD209, CD123, CD1a, Langerin) in 40 colorectal cancer samples from patients, in whom the state of systemic T-cell responses against tumor-associated antigens (TAA) and Treg infiltration had previously been determined.</p> <p>Results</p> <p>All specimens contained cells positive for CD68, CD163, S100 and CD1a in epithelial tumor tissue and tumor stroma. Only a very few (less than median 3/HPF) CD123+, CD1a+, CD11c+, CD 208+, CD209+, or Langerin+ cells were detected in the specimens. Overall, we found a trend towards increased infiltration by S100-positive DC and a significantly increased number of stromal S100-positive DC in patients without T-cell response. There was an increase of stromal S100 DC and CD163 macrophages in limited disease (S100: 11.1/HPF vs. 7.3/HPF, p = 0.046; CD163: 11.0/HPF vs. 8.1/HPF, p = 0.06). We found a significant, positive correlation between S100-positive DC and FOXP3-positive Tregs. Survival in patients with high DC infiltration was significantly better than that in those with low DC infiltration (p < 0.05). Furthermore, we found a trend towards better survival for increased infiltration with CD163-positive macrophages (p = 0.07).</p> <p>Conclusion</p> <p>The present <it>in situ </it>study adds new data to the discussion on the interaction between the innate and adoptive immune system. Our data strongly support the hypothesis that tumor-infiltrating DC are a key factor at the interface between innate and adaptive immune response in malignant disease. Tumor infiltrating S100-positive DC show an inverse relationship with the systemic antigen-specific T-cell response, a positive correlation with regulatory T cells, and a positive association with survival in CRC. These data put tumor-infiltrating DC at the center of the relevant immune response in CRC.</p
    • …
    corecore