12 research outputs found

    The mechanisms of coronary restenosis: insights from experimental models

    No full text
    Since its introduction into clinical practice, more than 20 years ago, percutaneous transluminal coronary angioplasty (PTCA) has proven to be an effective, minimally invasive alternative to coronary artery bypass grafting (CABG). During this time there have been great improvements in the design of balloon catheters, operative procedures and adjuvant drug therapy, and this has resulted in low rates of primary failure and short-term complications. However, the potential benefits of angioplasty are diminished by the high rate of recurrent disease. Up to 40% of patients undergoing angioplasty develop clinically significant restenosis within a year of the procedure. Although the deployment of endovascular stents at the time of angioplasty improves the short-term outcome, ‘in-stent’ stenosis remains an enduring problem. In order to gain an insight into the mechanisms of restenosis, several experimental models of angioplasty have been developed. These have been used together with the tools provided by recent advances in molecular biology and catheter design to investigate restenosis in detail. It is now possible to deliver highly specific molecular antagonists, such as antisense gene sequences, to the site of injury. The knowledge provided by these studies may ultimately lead to novel forms of intervention. The present review is a synopsis of our current understanding of the pathological mechanisms of restenosis

    Non-resonant magnetic braking on JET and TEXTOR

    No full text
    The non-resonant magnetic braking effect induced by a non-axisymmetric magnetic perturbation is investigated on JET and TEXTOR. The collisionality dependence of the torque induced by the n = 1, where n is the toroidal mode number, magnetic perturbation generated by the error field correction coils on JET is observed. The observed torque is located mainly in the plasma core (normalized radius

    Overview of JET results

    No full text
    Since the last IAEA conference, the scientific programme of JET has focused on the qualification of the integrated operating scenarios for ITER and on physics issues essential for the consolidation of design choices and the efficient exploitation of ITER. Particular attention has been given to the characterization of the edge plasma, pedestal energy and edge localized modes (ELMs), and their impact on plasma facing components (PFCs). Various ELM mitigation techniques have been assessed for all ITER operating scenarios using active methods such as resonant magnetic field perturbation, rapid variation of the radial field and pellet pacing. In particular, the amplitude and frequency of type I ELMs have been actively controlled over a wide parameter range (q95 = 3-4.8, βN ≥ 3.0) by adjusting the amplitude of the n = 1 external perturbation field induced by error field correction coils. The study of disruption induced heat loads on PFCs has taken advantage of a new wide-angle viewing infrared system and a fast bolometer to provide a detailed account of time, localization and form of the energy deposition. Specific ITER-relevant studies have used the unique JET capability of varying the toroidal field (TF) ripple from its normal low value δBT = 0.08% up to δBT = 1% to study the effect of TF ripple on high confinement-mode plasmas. The results suggest that δBT < 0.5% is required on ITER to maintain adequate confinement to allow QDT = 10 at full field. Physics issues of direct relevance to ITER include heat and toroidal momentum transport, with experiments using power modulation to decouple power input and torque to achieve first experimental evidence of inward momentum pinch in JET and determine the threshold for ion temperature gradient driven modes. Within the longer term JET programme in support of ITER, activities aiming at the modification of the JET first wall and divertor and the upgrade of the neutral beam and plasma control systems are being conducted. The procurement of all components will be completed by 2009 with the shutdown for the installation of the beryllium wall and tungsten divertor extending from summer 2009 to summer 2010

    Study of fast-ion transport induced by fishbones on JET

    No full text
    The impact of fishbone oscillations onto a confined fast-ion population is simulated for a JET plasma and benchmarked against experiment quantitatively with the help of neutron rate measurements. The transient drops in volume integrated neutron emission are found to be mainly caused by the spatial redistribution of the (neutral beam injected) fast-ion population confined in the plasma rather than by fast-ion loss. The simulations yield a quadratic dependence of the neutron drop on the fishbone amplitude. It is found that the simulations are able to correctly reproduce the magnitude of the experimentally observed drop in volume integrated neutron emission to within a factor 2. Furthermore, frequency chirping is found to be important. Omitting the fishbone frequency chirp in the simulations reduces the magnitude of the neutron rate drop (and hence fast-ion redistribution) to about half its original value

    High-resolution gamma ray spectroscopy measurements of the fast ion energy distribution in JET He-4 plasmas

    No full text
    corecore