746 research outputs found

    High-order terms in the renormalized perturbation theory for the Anderson impurity model

    Full text link
    We study the renormalized perturbation theory of the single-impurity Anderson model, particularly the high-order terms in the expansion of the self-energy in powers of the renormalized coupling U~\tilde{U}. Though the presence of counter-terms in the renormalized theory may appear to complicate the diagrammatics, we show how these can be seamlessly accommodated by carrying out the calculation order-by-order in terms of skeleton diagrams. We describe how the diagrams pertinent to the renormalized self-energy and four-vertex can be automatically generated, translated into integrals and numerically integrated. To maximize the efficiency of our approach we introduce a generalized kk-particle/hole propagator, which is used to analytically simplify the resultant integrals and reduce the dimensionality of the integration. We present results for the self-energy and spectral density to fifth order in U~\tilde{U}, for various values of the model asymmetry, and compare them to a Numerical Renormalization Group calculation.Comment: 11 pages, 8 figure

    Direct laser printing of thin-film polyaniline devices

    Full text link
    We report the fabrication of electrically functional polyaniline thin-film microdevices. Polyaniline films were printed in the solid phase by Laser Induced Forward Transfer directly between Au electrodes on a Si/SiO2 substrate. To apply solid-phase deposition, aniline was in situ polymerized on quartz substrates. Laser deposition preserves the morphology of the films and delivers sharp features with controllable dimensions. The electrical characteristics of printed polyaniline present ohmic behavior, allowing for electroactive applications. Results on gas sensing of ammonia are presented.Comment: In Pres

    A simple model to estimate atmospheric concentrations of aerosol chemical species based on snow core chemistry at Summit, Greenland

    Get PDF
    A simple model is presented to estimate atmospheric concentrations of chemical species that exist primarily as aerosols based on snow core/ice core chemistry at Summit, Greenland. The model considers the processes of snow, fog, and dry deposition. The deposition parameters for each of the processes are estimated for SO42− and Ca2+ and are based on experiments conducted during the 1993 and 1994 summer field seasons. The seasonal mean atmospheric concentrations are estimated based on the deposition parameters and snow cores obtained during the field seasons. The ratios of the estimated seasonal mean airborne concentration divided by the measured mean concentration ( ) for SO42− over the 1993 and 1994 field seasons are 0.85 and 0.95, respectively. The ratios for Ca2+ are 0.45 and 0.90 for the 1993 and 1994 field seasons. The uncertainties in the estimated atmospheric concentrations range from 30% to 40% and are due to variability in the input parameters. The model estimates the seasonal mean atmospheric SO42− and Ca2+ concentrations to within 15% and 55%, respectively. Although the model is not directly applied to ice cores, the application of the model to ice core chemical signals is briefly discussed

    Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set

    Get PDF
    A module predicting the oxidation state of organic aerosol (OA) has been developed using the two-dimensional volatility basis set (2D-VBS) framework. This model is an extension of the 1D-VBS framework and tracks saturation concentration and oxygen content of organic species during their atmospheric lifetime. The host model, a one-dimensional Lagrangian transport model, is used to simulate air parcels arriving at Finokalia, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-08). Extensive observations were collected during this campaign using an aerosol mass spectrometer (AMS) and a thermodenuder to determine the chemical composition and volatility, respectively, of the ambient OA. Although there are several uncertain model parameters, the consistently high oxygen content of OA measured during FAME-08 (O:C = 0.8) can help constrain these parameters and elucidate OA formation and aging processes that are necessary for achieving the high degree of oxygenation observed. The base-case model reproduces observed OA mass concentrations (measured mean = 3.1 μg m<sup>−3</sup>, predicted mean = 3.3 μg m<sup>−3</sup>) and O:C (predicted O:C = 0.78) accurately. A suite of sensitivity studies explore uncertainties due to (1) the anthropogenic secondary OA (SOA) aging rate constant, (2) assumed enthalpies of vaporization, (3) the volatility change and number of oxygen atoms added for each generation of aging, (4) heterogeneous chemistry, (5) the oxidation state of the first generation of compounds formed from SOA precursor oxidation, and (6) biogenic SOA aging. Perturbations in most of these parameters do impact the ability of the model to predict O:C well throughout the simulation period. By comparing measurements of the O:C from FAME-08, several sensitivity cases including a high oxygenation case, a low oxygenation case, and biogenic SOA aging case are found to unreasonably depict OA aging, keeping in mind that this study does not consider possibly important processes like fragmentation that may offset mass gains and affect the prediction bias. On the other hand, many of the cases chosen for this study predict average O:C estimates that are consistent with the observations, illustrating the need for more thorough experimental characterizations of OA parameters including the enthalpy of vaporization and oxidation state of the first generation of SOA products. The ability of the model to predict OA concentrations is less sensitive to perturbations in the model parameters than its ability to predict O:C. In this sense, quantifying O:C with a predictive model and constraining it with AMS measurements can reduce uncertainty in our understanding of OA formation and aging

    Modeling of the processing and removal of trace gas and aerosol species by Arctic radiation fogs and comparison with measurements

    Get PDF
    A Lagrangian radiation fog model is applied to a fog event at Summit, Greenland. The model simulates the formation and dissipation of fog. Included in the model are detailed gas and aqueous phase chemistry, and deposition of chemical species with fog droplets. Model predictions of the gas phase concentrations of H2O2, HCOOH, SO2, and HNO3 as well as the fog fluxes of S(VI), N(V), H2O2, and water are compared with measurements. The predicted fluxes of S(VI), N(V), H2O2, and fog water generally agree with measured values. Model results show that heterogeneous SO2 oxidation contributes to approximately 40% of the flux of S(VI) for the modeled fog event, with the other 60% coming from preexisting sulfate aerosol. The deposition of N(V) with fog includes contributions from HNO3 and NO2 initially present in the air mass. HNO3 directly partitions into the aqueous phase to create N(V), and NO2 forms N(V) through reaction with OH and the nighttime chemistry set of reactions which involves N2O5 and water vapor. PAN contributes to N(V) by gas phase decomposition to NO2, and also by direct aqueous phase decomposition. The quantitative contributions from each path are uncertain since direct measurements of PAN and NO2 are not available for the fog event. The relative contributions are discussed based on realistic ranges of atmospheric concentrations. Model results suggest that in addition to the aqueous phase partitioning of the initial HNO3 present in the air mass, the gas phase decomposition of PAN and subsequent reactions of NO2 with OH as well as nighttime nitrate chemistry may play significant roles in depositing N(V) with fog. If a quasi-liquid layer exists on snow crystals, it is possible that the reactions taking place in fog droplets also occur to some extent in clouds as well as at the snow surface

    Size-resolved CCN distributions and activation kinetics of aged continental and marine aerosol

    Get PDF
    We present size-segregated measurements of cloud condensation nucleus (CCN) activity of aged aerosol sampled at Finokalia, Crete, during the Finokalia Aerosol Measurement Experiment of summer 2007 (FAME07). From analysis of the data, hygroscopicity and activation kinetics distributions are derived. The CCN are found to be highly hygroscopic, (expressed by a size- and time- averaged hygroscopicity parameter κ ∼ 0.22), with the majority of particles activating at ~0.5–0.6 % supersaturation. Air masses originating from Central-Eastern Europe tend to be associated with higher CCN concentrations and slightly lower hygroscopicity (κ ∼ 0.18) than for other airmass types. The particles were always well mixed, as reflected by the high activation ratios and narrow hygroscopicity distribution widths. Smaller particles (~40 nm) were found to be more hygroscopic (~0.1κ units higher) than the larger ones (~100 nm). The particles with diameters less than 80 nm exhibited a diurnal hygroscopicity cycle (with κ peaking at ~14 h local time), consistent with photochemical aging and volatilization of less hygroscopic material from the aerosol. Use of bulk chemical composition and the aerosol number distribution results in excellent CCN closure when applying Köhler theory in its simplest form. Using asymptotic and threshold droplet growth analysis, the "aged" organics present in the aerosol were found not to suppress or delay the water uptake kinetics of particles in this environment

    Stability and relapse after orthodontic treatment of deep bite cases—a long-term follow-up study

    Get PDF
    The purpose of this long-term follow-up study was twofold—firstly, to assess prevalence of relapse after treatment of deep bite malocclusion and secondly, to identify risk factors that predispose patients with deep bite malocclusion to relapse. Sixty-one former patients with overbite more than 50% incisor overlap before treatment were successfully recalled. Clinical data, morphometrical measurements on plaster casts before treatment, after treatment and at long-term follow-up, as well as cephalometric measurements before and after treatment were collected. The median follow-up period was 11.9 years. Patients were treated by various treatment modalities, and the majority of patients received at least a lower fixed retainer and an upper removable bite plate during retention. Relapse was defined as increase in incisor overlap from below 50% after treatment to equal or more than 50% incisor overlap at long-term follow-up. Ten per cent of the patients showed relapse to equal or larger than 50% incisor overlap, and their amount of overbite increase was low. Among all cases with deep bite at follow-up, gingival contact and palatal impingement were more prevalent in partially corrected noncompliant cases than in relapse cases. In this sample, prevalence and amount of relapse were too low to identify risk factors of relaps

    Chitosan-Silica Hybrid Porous Membranes

    Get PDF
    Chitosan–silica porous hybrids were prepared by a novel strategy in order to improve the mechanical properties of chitosan (CHT) in the hydrogel state. The inorganic silica phase was introduced by sol–gel reactions in acidic medium inside the pores of already prepared porous scaffolds. In order to make the scaffolds insoluble in acidic media chitosan was cross-linked by genipin (GEN) with an optimum GEN concentration of 3.2 wt.%. Sol–gel reactions took place with Tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) acting as silica precursors. GPTMS served also as a coupling agent between the free amino groups of chitosan and the silica network. The morphology study of the composite revealed that the silica phase appears as a layer covering the chitosan membrane pore walls. The mechanical properties of the hybrids were characterized by means of compressive stress–strain measurements. By immersion in water the hybrids exhibit an increase in elastic modulus up to two orders of magnitude.The research project is implemented within the framework of the Action "Supporting Postdoctoral Researchers" of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State, Grant Number: NARGEL-PE5(2551). JFM thanks the Portuguese Foundation for Science and Technology (FCT) for financial support through the PTDC/FIS/115048/2009 project. JLGR acknowledges the support of the Ministerio de Economia y Competitividad, MINECO, through the MAT2013-46467-C4-1-R project

    The contributions of snow, fog, and dry deposition to the summer flux of anions and cations at Summit, Greenland

    Get PDF
    Experiments were performed during the period May–July of 1993 at Summit, Greenland. Aerosol mass size distributions as well as daily average concentrations of several anionic and cationic species were measured. Dry deposition velocities for SO42− were estimated using surrogate surfaces (symmetric airfoils) as well as impactor data. Real-time concentrations of particles greater than 0.5 μm and greater than 0.01 μm were measured. Snow and fog samples from nearly all of the events occurring during the field season were collected. Filter sampler results indicate that SO42− is the dominant aerosol anion species, with Na+, NH4+, and Ca2+being the dominant cations. Impactor results indicate that MSA and SO42− have similar mass size distributions. Furthermore, MSA and SO42− have mass in both the accumulation and coarse modes. A limited number of samples for NH4+ indicate that it exists in the accumulation mode. Na, K, Mg, and Ca exist primarily in the coarse mode. Dry deposition velocities estimated from impactor samples and a theory for dry deposition to snow range from 0.017 cm/s +/− 0.011 cm/s for NH4+ to 0.110 cm/s +/− 0.021 cm/s for Ca. SO42− dry deposition velocity estimates using airfoils are in the range 0.023 cm/s to 0.062 cm/s, as much as 60% greater than values calculated using the airborne size distribution data. The rough agreement between the airfoil and impactor-estimated dry deposition velocities suggests that the airfoils may be used to approximate the dry deposition to the snow surface. Laser particle counter (LPC) results show that particles \u3e 0.5 μm in diameter efficiently serve as nuclei to form fog droplets. Condensation nuclei (CN) measurements indicate that particles \u3c 0.5 μm are not as greatly affected by fog. Furthermore, impactor measurements suggest that from 50% to 80% of the aerosol SO42−serves as nuclei for fog droplets. Snow deposition is the dominant mechanism transporting chemicals to the ice sheet. For NO3−, a species that apparently exists primarily in the gas phase as HNO3(g), 93% of the seasonal inventory (mass of a deposited chemical species per unit area during the season) is due to snow deposition, which suggests efficient scavenging of HNO3(g) by snowflakes. The contribution of snow deposition to the seasonal inventories of aerosols ranges from 45% for MSA to 76% for NH4+. The contribution of fog to the seasonal inventories ranges from 13% for Na+ and Ca2+ to 26% and 32% for SO42− and MSA. The dry deposition contribution to the seasonal inventories of the aerosol species is as low as 5% for NH4+ and as high as 23% for MSA. The seasonal inventory estimations do not take into consideration the spatial variability caused by blowing and drifting snow. Overall, results indicate that snow deposition of chemical species is the dominant flux mechanism during the summer at Summit and that all three deposition processes should be considered when estimating atmospheric concentrations based on ice core chemical signals
    corecore