11 research outputs found

    ΠœΠ΅Ρ‚ΠΎΠ΄Π° Π·Π° ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΈΡΠ°ΡšΠ΅ конститутивних ΠΌΠΎΠ΄Π΅Π»Π° Π·Π° ΡΠΈΠΌΡƒΠ»ΠΈΡ€Π°ΡšΠ΅ процСса ΠΏΡ€Π΅ΡΠΎΠ²Π°ΡšΠ° ΠΊΠ΅Ρ€Π°ΠΌΠΈΡ‡ΠΊΠΎΠ³ ΠΏΡ€Π°Ρ…Π° ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ ΠΈΠ½Π²Π΅Ρ€Π·Π½ΠΈΡ… Π°Π½Π°Π»ΠΈΠ·Π°

    Get PDF
    Ceramic parts are increasingly produced by compacting loose powders to form, what is called a ”greenbody”, which is further subjected to sintering, to give the final product. During the sintering stage,the green body undergoes shrinkage inversely proportional to its density,so defects and even large cracks can appear in the presence of density gradients. Such circumstanceaffectsthequalityofproductionofceramicparts,withstillelevated number ofrejectedpieces. Numerical simulationsofgreenbodyformationareincreasinglyusedasasupportfor the stable production.Modeling the compaction process usually involves complex constitutive models with an elevated number of parameters. The current praxis of evaluating the governing constants relies on a large number of experiments on the green body,like,Brazilian,crush,triaxialtests etc.Therefore,the model calibration is time consuming and rather difficult,presenting an obstacle for routine industrial purposes. To tackle this problem, an alternative procedure based on InverseAnalysis(IA)is developed, which relies on the data collected from the compaction experimentonly. Such approach fully eliminates the need for further testing on the green body, making it practicable for routine industrial purposes.Within this methodology,adiscrepancy function isformedthatquantifiesthedifferencebetweenexperimentalandsimulated quantities collectedfromthecompactiontest,whichisfurtherminimizedtogivethe constitutive parameters.Toascertainthestronginfluenceofsoughtparameterson measurable data,certainnewgreenbodygeometriesaredesigned. Proposed approachistestedandvalidatedonthecalibrationof”modified”Drucker- Prager Cap(DPC)model,whichisfrequentlyadoptedforpowderpressingsimulations. Tothispurpose,rigorousexperimentationinvolvingbothcompactiontestsforcalibration and destructivetestsforverificationareperformed.TheparametersobtainedthroughIA are usedtosimulatecomplexgeometries,followedbyacomparativestudybetweenthe currently adoptedpraxisvs.inverseanalysismethodology. Further on,calibrationofamoresophisticatedmaterialmodelrelyingonthe Bigoni-Piccolroaz yieldsurfaceisconsidered.Certaininstabilitiesinthenumerical implementation of this fairly complex model,lead to discontinuous discrepancy function, and therefore,parameters are assessed by performing them inimization through genetic algorithms.Computational burden coming from recursive simulations required by the genetic algorithm is made consistent by employing controllably ”enriched” reduced basis model based on proper orthogonal decomposition. Finally,a comparison between the novel model and the ”modified” DPCmodel is presented.ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡšΠ° ΠΊΠ΅Ρ€Π°ΠΌΠΈΡ‡ΠΊΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΈ Π½Π°Ρ˜Ρ‡Π΅ΡˆΡ›Π΅ сС ΡΠ°ΡΡ‚ΠΎΡ˜ΠΈ ΠΈΠ· процСса ΠΌΠ΅Ρ…Π°Π½ΠΈΡ‡ΠΊΠΎΠ³ ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚ΠΈΡ€Π°ΡšΠ° ΠΊΠ΅Ρ€Π°ΠΌΠΈΡ‡ΠΊΠΎΠ³ ΠΏΡ€Π°Ρ…Π° Ρƒ Ρ†ΠΈΡ™Ρƒ добијања испрСска, који сС ΠΏΠΎΡ‚ΠΎΠΌ ΠΏΠΎΠ΄Π²Ρ€Π³Π°Π²Π° ΡΠΈΠ½Ρ‚Π΅Ρ€ΠΎΠ²Π°ΡšΡƒ Π½Π° повишСној Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ. Π£ Ρ‚ΠΎΠΊΡƒ ΡΠΈΠ½Ρ‚Π΅Ρ€ΠΎΠ²Π°ΡšΠ°, Π΅Π²Π΅Π½Ρ‚ΡƒΠ°Π»Π½ΠΎ присуство ΡˆΡƒΠΏΡ™ΠΈΠ½Π° Ρƒ отпрСску ΠΈΠ·Π°Π·ΠΈΠ²Π° ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΠ²Π½ΠΈΡ˜Π΅ Π»ΠΎΠΊΠ°Π»Π½ΠΎ ΡΠΊΡƒΠΏΡ™Π°ΡšΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»Π° Ρƒ Ρ‚ΠΎΡ˜ Π·ΠΎΠ½ΠΈ, ΡˆΡ‚ΠΎ Π·Π° послСдицу ΠΈΠΌΠ° нСхомогСност Ρ„ΠΈΠ½Π°Π»Π½ΠΎΠ³ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π° ΠΈΠ»ΠΈ ΡΡ‚Π²Π°Ρ€Π°ΡšΠ΅ ΡƒΠ½ΡƒΡ‚Ρ€Π°ΡˆΡšΠΈΡ… прскотина. Π‘Ρ…ΠΎΠ΄Π½ΠΎ Ρ‚ΠΎΠΌΠ΅ пСрформансС Ρ„ΠΈΠ½Π°Π»Π½ΠΎΠ³ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π° Ρƒ вСликој ΠΌΠ΅Ρ€ΠΈ су условљСнС ΠΊΠ²Π°Π»ΠΈΡ‚Π΅Ρ‚ΠΎΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΎΠ³ отпрСска. Π—Π½Π°Ρ‡Π°Ρ˜Π°Π½ Ρ„Π°ΠΊΡ‚ΠΎΡ€ Π·Π° стабилну ΠΈ Сфикасну ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡšΡƒ ΠΊΠ΅Ρ€Π°ΠΌΠΈΡ‡ΠΊΠΈΡ… отпрСсака прСдставља могућност ΠΈΠ·Π²ΠΎΡ’Π΅ΡšΠ° рСалистичних Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈΡ… ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π° самог процСса. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ΅ ΠΎΠ²ΠΎΠ³ процСса Π½Π°Ρ˜Ρ‡Π΅ΡˆΡ›Π΅ ΡƒΠΊΡ™ΡƒΡ‡ΡƒΡ˜Π΅ комплСкснС конститутивнС ΠΌΠΎΠ΄Π΅Π»Π΅ са Π²Π΅Π»ΠΈΠΊΠΈΠΌ Π±Ρ€ΠΎΡ˜Π΅ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π°. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π΅ ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΈΡΠ°ΡšΠ° ΠΎΠ²ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π°, којС су Ρ‚Ρ€Π΅Π½ΡƒΡ‚Π½ΠΎ Ρƒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈ,Π·Π°Ρ…Ρ‚Π΅Π²Π°Ρ˜Ρƒ ΠΈΠ·Π²ΠΎΡ’Π΅ΡšΠ΅ Π½ΠΈΠ·Π° дСструктивних тСстова Π½Π° отпрСску. Овакав приступ јС Π·Π°Ρ…Ρ‚Π΅Π²Π°Π½ ΠΈ Π½Π΅ΠΏΡ€ΠΈΠ»Π°Π³ΠΎΡ’Π΅Π½ Π·Π° рутинску ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜ΡΠΊΡƒ ΠΏΡ€ΠΈΠΌΠ΅Π½Ρƒ. Π£ ΠΎΠΊΠ²ΠΈΡ€Ρƒ ΠΎΠ²Π΅ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½Π° јС Π°Π»Ρ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π°,са Π½ΠΈΠ·ΠΎΠΌ прСдности ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ°Π²Π°ΡšΡƒ описаног ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π°, заснована Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈ ΠΈΠ½Π²Π΅Ρ€Π·Π½ΠΈΡ… Π°Π½Π°Π»ΠΈΠ·Π°.РазвијСна ΠΌΠ΅Ρ‚ΠΎΠ΄Π° користи ΠΊΠ°ΠΎ СкспСримСнталнС ΠΏΠΎΠ΄Π°Ρ‚ΠΊΠ΅ искључиво ΠΎΠ½Π΅ врСдности којС сС ΠΌΠΎΠ³Ρƒ ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚ΠΈ Ρƒ Ρ‚ΠΎΠΊΡƒ процСса сабијања, Ρ‡ΠΈΠΌΠ΅ јС искључСна ΠΏΠΎΡ‚Ρ€Π΅Π±Π° Π·Π° ΡΠΏΡ€ΠΎΠ²ΠΎΡ’Π΅ΡšΠ΅ΠΌ дСструктивних ΠΈΡΠΏΠΈΡ‚ΠΈΠ²Π°ΡšΠ°Π½Π° отпрСску.Π£ ΠΎΠΊΠ²ΠΈΡ€Ρƒ Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°Π½Π° јС Ρ†ΠΈΡ™Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π° која ΠΊΠ²Π°Π½Ρ‚ΠΈΡ„ΠΈΠΊΡƒΡ˜Π΅ дискрСпанцу ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ СкспСримСнтално ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΡ…,ΠΈ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Ρ˜ΡƒΡ›ΠΈΡ… Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈ Π΄ΠΎΠ±ΠΈΡ˜Π΅Π½ΠΈΡ… врСдности.Π’Π°ΠΊΠΎ јС процСс ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅ конститутивних ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° свСдСн Π½Π° ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ΅ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°Π½Π΅ Ρ†ΠΈΡ™Π½Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅.Како Π±ΠΈ сС ΠΎΠ±Π΅Π·Π±Π΅Π΄ΠΈΠ»Π° ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›Π° осСтљивост СкспСримСнтално ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΡ… врСдности Π½Π° Ρ‚Ρ€Π°ΠΆΠ΅Π½Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π΅Ρ€Π΅,дСфинисанС су посСбнС Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Π΅ отпрСсака ΠΊΠ°ΠΎ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ Π΄Π΅Ρ‚Π°Ρ™Π½Π΅ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜ΡΠΊΠ΅ Π°Π½Π°Π»ΠΈΠ·Π΅.Π’ΠΈΠΌΠ΅ јС Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°Π½ СкспСримСнтлани ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ» који Ρ‚Π°Ρ‡Π½ΠΎ Π΄Π΅Ρ„ΠΈΠ½ΠΈΡˆΠ΅ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Ρƒ отпрСсака,ΠΈΠ·Π±ΠΎΡ€ СкспСримСнталних врСдности,ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Ρƒ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›ΠΈΡ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚Π°ΠΌΠ° ΠΈ Ρ†ΠΈΡ™Ρƒ аутоматског добијања Ρ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΡ… конститутивних ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π°. РазвијСна ΠΌΠ΅Ρ‚ΠΎΠ΄Π° јС тСстирана Π½Π° Ρ€Π΅ΡˆΠ°Π²Π°ΡšΡƒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅ ”Drucker-PragerCap” конститутивног ΠΌΠΎΠ΄Π΅Π»Π°,који сС чСсто ΠΏΡ€ΠΈΠΌΠ΅ΡšΡƒΡ˜Π΅ Ρƒ ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π°ΠΌΠ° процСса сабијања ΠΏΡ€Π°Ρ…Π°. Π’Π΅ΡΡ‚ΠΈΡ€Π°ΡšΠ΅ јС ΡƒΠΊΡ™ΡƒΡ‡ΠΈΠ»ΠΎ ΠΈ ΠΎΠ±ΠΈΠΌΠ½Ρƒ СкспСримСнталну ΠΊΠ°ΠΌΠΏΠ°ΡšΡƒ ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ дСструктивних тСстова Π½Π° отпрСсцима, Ρ‡ΠΈΠΌΠ΅ су добијСнС Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½Π΅ врСдности, ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Ρ™Π΅Π½Π΅ ΠΊΠ°ΠΎ Π±Π°Π·Π° Π·Π° ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅. Допунска Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π° ΡΠ°ΡΡ‚ΠΎΡ˜Π°Π»Π° сС Ρƒ ΡΠΈΠΌΡƒΠ»ΠΈΡ€Π°ΡšΡƒ комплСксних Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Π°, ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ конститутивних ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° Π΄ΠΎΠ±ΠΈΡ˜Π΅Π½ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° јС ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π° ΠΈ Π½Π° ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Ρƒ слоТСнијСг конститутивног ΠΌΠΎΠ΄Π΅Π»Π° који користи ”Bigoni-Piccolroaz” ΠΌΠΎΠ΄Π΅Π» пластичности. Ово прСдставља Π½ΠΎΠ² ΠΈ ΠΈΠ·Ρ€Π°Π·ΠΈΡ‚ΠΎ комплСксан конститутивни ΠΌΠΎΠ΄Π΅Π», ΠΏΠ° јС њСгова Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ° ΠΈΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Π° Ρ€Π΅Π·ΡƒΠ»Ρ‚ΠΈΡ€Π°Π»Π° нСстабилним Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈΠΌ ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π°ΠΌΠ°, Ρ‡ΠΈΠ½Π΅Ρ›ΠΈ Ρ†ΠΈΡ™Π½Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Ρƒ дисконтинуалном. ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ°Π²Π°ΡšΡƒ ΠΎΠ²ΠΎΠ³ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅, ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π° јС ΠΈΠ·Π²Ρ€ΡˆΠ΅Π½Π° ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠΌ β€žΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡ΠΊΠΈΡ…Π°Π»Π³ΠΎΡ€ΠΈΡ‚Π°ΠΌΠ°β€œ,ΡƒΠ· Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½ΠΈ Ρ€Π΅Π΄ΡƒΠΊΠΎΠ²Π°Π½ΠΈ ΠΌΠΎΠ΄Π΅Π» Π·Π° Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ΅ ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π΅ тСста, Ρ‡ΠΈΠΌΠ΅ јС постигнуто Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ смањСњС ΠΊΠΎΠΌΠΏΡ˜ΡƒΡ‚Π΅Ρ€ΡΠΊΠΎΠ³ Π²Ρ€Π΅ΠΌΠ΅Π½Π° ΠΏΡ€ΠΈΠΈΠ·Π²ΠΎΡ’Π΅ΡšΡƒ Π½Π΅Π»ΠΈΠ½Π΅Π°Ρ€Π½ΠΈΡ… ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π°. На самом ΠΊΡ€Π°Ρ˜Ρƒ, ΡƒΠΏΠΎΡ€Π΅Ρ’Π΅Π½ΠΈ су Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ добијСни ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ јСдног ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠ³ конститутивног ΠΌΠΎΠ΄Π΅Π»Π° ΡƒΠ· Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π΅ смСрницС ΠΎ Π³Ρ€ΡƒΠΏΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π½Π° којима ΠΈΡ… јС ΠΌΠΎΠ³ΡƒΡ›Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΠΈ са Π·Π°Π΄ΠΎΠ²ΠΎΡ™Π°Π²Π°Ρ˜ΡƒΡ›ΠΎΠΌ Ρ‚Π°Ρ‡Π½ΠΎΡˆΡ›Ρƒ

    Material model calibration through indentation test and stochastic inverse analysis

    Get PDF
    Eksperiment instrumentalnog utiskivanja se sve viΕ‘e koristi za karakterizaciju materijala različitog tipa. Razvijene metode kombinuju ovaj test sa kompjuterskom simulacijom u okviru inverznih analiza sa ciljem dobijanja parametara koji ulaze u jednačine različitih konstitutivnih modela. Izlaz iz ovakvih procedura predstavljaju vrednosti traΕΎenih parametara u determinističkom smislu, dok je za praktičnu inΕΎenjersku upotrebu poΕΎeljno raspolagati i sa procenom tačnosti dobijenih vrednosti. U ovom radu prikazana je numeričko-eksperimentalna metoda zasnovana na inverznoj analizi koja kao ulazni podatak koristi eksperimentalno izmerenu krivu utiskivanja (kriva koja daje zavisnost primenjene sila u funkciji ostvarene dubine utiskivanja). Numeričke simulacije testa utiskivanja su značajno ubrzame primenom redukovanog modela zasnovanog na pravilnoj ortogonalnoj dekompoziciji a posebno razvijenom za ovu svrhu. RezultijuΔ‡i inverzni problem je reΕ‘en u stohastičkom kontekstu koriΕ‘Δ‡enjem Monte Karlo simulacija kao i Kalmanovih filtera. Dobijeni rezultati su komparativno prezentovani u cilju poreΔ‘enja dobijene tačnosti i računarske efikasnosti.Indentation test is used with growing popularity for the characterization of various materials on different scales. Developed methods are combining the test with computer simulation and inverse analyses to assess material parameters entering into constitutive models. The outputs of such procedures are expressed as evaluation of sought parameters in deterministic sense, while for engineering practice it is desirable to assess also the uncertainty which affects the final estimates resulting from various sources of errors within the identification procedure. In this paper an experimental-numerical method is presented centered on inverse analysis build upon data collected from the indentation test in the form of force-penetration relationship (so-called 'indentation curve'). Recursive simulations are made computationally economical by an 'a priori' model reduction procedure. Resulting inverse problem is solved in a stochastic context using Monte Carlo simulations and non-sequential Extended Kalman filter. Obtained results are presented comparatively as for accuracy and computational efficiency

    Reduced Order Numerical Modeling for Calibration of Complex Constitutive Models in Powder Pressing Simulations

    Get PDF
    Numerical simulations of different ceramic production phases often involve complex constitutive models, with difficult calibration process, relying on a large number of experiments. Methodological developments, proposed in present paper regarding this calibration problem can be outlined as follows: assessment of constitutive parameters is performed through inverse analysis procedure, centered on minimization of discrepancy function which quantifies the difference between measurable quantities and their computed counterpart. Resulting minimization problem is solved through genetic algorithms, while the computational burden is made consistent with constraints of routine industrial applications by exploiting Reduced Order Model (ROM) based on proper orthogonal decomposition. Throughout minimization, a gradual enrichment of designed ROM is used, by including additional simulations. Such strategy turned out to be beneficial when applied to models with a large number of parameters. Developed procedure seems to be effective when dealing with complex constitutive models, that can give rise to non-continuous discrepancy function due to the numerical instabilities. Proposed approach is tested and experimentally validated on the calibration of modified Drucker-Prager CAP model, frequently adopted for ceramic powder pressing simulations. Assessed values are compared with those obtained by traditional, time-consuming tests, performed on pressed green bodies

    Reduced Order Numerical Modeling for Calibration of Complex Constitutive Models in Powder Pressing Simulations

    Get PDF
    Numerical simulations of different ceramic production phases often involve complex constitutive models, with difficult calibration process, relying on a large number of experiments. Methodological developments, proposed in present paper regarding this calibration problem can be outlined as follows: assessment of constitutive parameters is performed through inverse analysis procedure, centered on minimization of discrepancy function which quantifies the difference between measurable quantities and their computed counterpart. Resulting minimization problem is solved through genetic algorithms, while the computational burden is made consistent with constraints of routine industrial applications by exploiting Reduced Order Model (ROM) based on proper orthogonal decomposition. Throughout minimization, a gradual enrichment of designed ROM is used, by including additional simulations. Such strategy turned out to be beneficial when applied to models with a large number of parameters. Developed procedure seems to be effective when dealing with complex constitutive models, that can give rise to non-continuous discrepancy function due to the numerical instabilities. Proposed approach is tested and experimentally validated on the calibration of modified Drucker-Prager CAP model, frequently adopted for ceramic powder pressing simulations. Assessed values are compared with those obtained by traditional, time-consuming tests, performed on pressed green bodies

    Material model calibration through indentation test and stochastic inverse analysis

    Get PDF
    Eksperiment instrumentalnog utiskivanja se sve viΕ‘e koristi za karakterizaciju materijala različitog tipa. Razvijene metode kombinuju ovaj test sa kompjuterskom simulacijom u okviru inverznih analiza sa ciljem dobijanja parametara koji ulaze u jednačine različitih konstitutivnih modela. Izlaz iz ovakvih procedura predstavljaju vrednosti traΕΎenih parametara u determinističkom smislu, dok je za praktičnu inΕΎenjersku upotrebu poΕΎeljno raspolagati i sa procenom tačnosti dobijenih vrednosti. U ovom radu prikazana je numeričko-eksperimentalna metoda zasnovana na inverznoj analizi koja kao ulazni podatak koristi eksperimentalno izmerenu krivu utiskivanja (kriva koja daje zavisnost primenjene sila u funkciji ostvarene dubine utiskivanja). Numeričke simulacije testa utiskivanja su značajno ubrzame primenom redukovanog modela zasnovanog na pravilnoj ortogonalnoj dekompoziciji a posebno razvijenom za ovu svrhu. RezultijuΔ‡i inverzni problem je reΕ‘en u stohastičkom kontekstu koriΕ‘Δ‡enjem Monte Karlo simulacija kao i Kalmanovih filtera. Dobijeni rezultati su komparativno prezentovani u cilju poreΔ‘enja dobijene tačnosti i računarske efikasnosti.Indentation test is used with growing popularity for the characterization of various materials on different scales. Developed methods are combining the test with computer simulation and inverse analyses to assess material parameters entering into constitutive models. The outputs of such procedures are expressed as evaluation of sought parameters in deterministic sense, while for engineering practice it is desirable to assess also the uncertainty which affects the final estimates resulting from various sources of errors within the identification procedure. In this paper an experimental-numerical method is presented centered on inverse analysis build upon data collected from the indentation test in the form of force-penetration relationship (so-called 'indentation curve'). Recursive simulations are made computationally economical by an 'a priori' model reduction procedure. Resulting inverse problem is solved in a stochastic context using Monte Carlo simulations and non-sequential Extended Kalman filter. Obtained results are presented comparatively as for accuracy and computational efficiency

    ΠœΠ΅Ρ‚ΠΎΠ΄Π° Π·Π° ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΈΡΠ°ΡšΠ΅ конститутивних ΠΌΠΎΠ΄Π΅Π»Π° Π·Π° ΡΠΈΠΌΡƒΠ»ΠΈΡ€Π°ΡšΠ΅ процСса ΠΏΡ€Π΅ΡΠΎΠ²Π°ΡšΠ° ΠΊΠ΅Ρ€Π°ΠΌΠΈΡ‡ΠΊΠΎΠ³ ΠΏΡ€Π°Ρ…Π° ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ ΠΈΠ½Π²Π΅Ρ€Π·Π½ΠΈΡ… Π°Π½Π°Π»ΠΈΠ·Π°

    No full text
    Ceramic parts are increasingly produced by compacting loose powders to form, what is called a ”greenbody”, which is further subjected to sintering, to give the final product. During the sintering stage,the green body undergoes shrinkage inversely proportional to its density,so defects and even large cracks can appear in the presence of density gradients. Such circumstanceaffectsthequalityofproductionofceramicparts,withstillelevated number ofrejectedpieces. Numerical simulationsofgreenbodyformationareincreasinglyusedasasupportfor the stable production.Modeling the compaction process usually involves complex constitutive models with an elevated number of parameters. The current praxis of evaluating the governing constants relies on a large number of experiments on the green body,like,Brazilian,crush,triaxialtests etc.Therefore,the model calibration is time consuming and rather difficult,presenting an obstacle for routine industrial purposes. To tackle this problem, an alternative procedure based on InverseAnalysis(IA)is developed, which relies on the data collected from the compaction experimentonly. Such approach fully eliminates the need for further testing on the green body, making it practicable for routine industrial purposes.Within this methodology,adiscrepancy function isformedthatquantifiesthedifferencebetweenexperimentalandsimulated quantities collectedfromthecompactiontest,whichisfurtherminimizedtogivethe constitutive parameters.Toascertainthestronginfluenceofsoughtparameterson measurable data,certainnewgreenbodygeometriesaredesigned. Proposed approachistestedandvalidatedonthecalibrationof”modified”Drucker- Prager Cap(DPC)model,whichisfrequentlyadoptedforpowderpressingsimulations. Tothispurpose,rigorousexperimentationinvolvingbothcompactiontestsforcalibration and destructivetestsforverificationareperformed.TheparametersobtainedthroughIA are usedtosimulatecomplexgeometries,followedbyacomparativestudybetweenthe currently adoptedpraxisvs.inverseanalysismethodology. Further on,calibrationofamoresophisticatedmaterialmodelrelyingonthe Bigoni-Piccolroaz yieldsurfaceisconsidered.Certaininstabilitiesinthenumerical implementation of this fairly complex model,lead to discontinuous discrepancy function, and therefore,parameters are assessed by performing them inimization through genetic algorithms.Computational burden coming from recursive simulations required by the genetic algorithm is made consistent by employing controllably ”enriched” reduced basis model based on proper orthogonal decomposition. Finally,a comparison between the novel model and the ”modified” DPCmodel is presented.ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡšΠ° ΠΊΠ΅Ρ€Π°ΠΌΠΈΡ‡ΠΊΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΈ Π½Π°Ρ˜Ρ‡Π΅ΡˆΡ›Π΅ сС ΡΠ°ΡΡ‚ΠΎΡ˜ΠΈ ΠΈΠ· процСса ΠΌΠ΅Ρ…Π°Π½ΠΈΡ‡ΠΊΠΎΠ³ ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚ΠΈΡ€Π°ΡšΠ° ΠΊΠ΅Ρ€Π°ΠΌΠΈΡ‡ΠΊΠΎΠ³ ΠΏΡ€Π°Ρ…Π° Ρƒ Ρ†ΠΈΡ™Ρƒ добијања испрСска, који сС ΠΏΠΎΡ‚ΠΎΠΌ ΠΏΠΎΠ΄Π²Ρ€Π³Π°Π²Π° ΡΠΈΠ½Ρ‚Π΅Ρ€ΠΎΠ²Π°ΡšΡƒ Π½Π° повишСној Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ. Π£ Ρ‚ΠΎΠΊΡƒ ΡΠΈΠ½Ρ‚Π΅Ρ€ΠΎΠ²Π°ΡšΠ°, Π΅Π²Π΅Π½Ρ‚ΡƒΠ°Π»Π½ΠΎ присуство ΡˆΡƒΠΏΡ™ΠΈΠ½Π° Ρƒ отпрСску ΠΈΠ·Π°Π·ΠΈΠ²Π° ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΠ²Π½ΠΈΡ˜Π΅ Π»ΠΎΠΊΠ°Π»Π½ΠΎ ΡΠΊΡƒΠΏΡ™Π°ΡšΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»Π° Ρƒ Ρ‚ΠΎΡ˜ Π·ΠΎΠ½ΠΈ, ΡˆΡ‚ΠΎ Π·Π° послСдицу ΠΈΠΌΠ° нСхомогСност Ρ„ΠΈΠ½Π°Π»Π½ΠΎΠ³ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π° ΠΈΠ»ΠΈ ΡΡ‚Π²Π°Ρ€Π°ΡšΠ΅ ΡƒΠ½ΡƒΡ‚Ρ€Π°ΡˆΡšΠΈΡ… прскотина. Π‘Ρ…ΠΎΠ΄Π½ΠΎ Ρ‚ΠΎΠΌΠ΅ пСрформансС Ρ„ΠΈΠ½Π°Π»Π½ΠΎΠ³ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π° Ρƒ вСликој ΠΌΠ΅Ρ€ΠΈ су условљСнС ΠΊΠ²Π°Π»ΠΈΡ‚Π΅Ρ‚ΠΎΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΎΠ³ отпрСска. Π—Π½Π°Ρ‡Π°Ρ˜Π°Π½ Ρ„Π°ΠΊΡ‚ΠΎΡ€ Π·Π° стабилну ΠΈ Сфикасну ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡšΡƒ ΠΊΠ΅Ρ€Π°ΠΌΠΈΡ‡ΠΊΠΈΡ… отпрСсака прСдставља могућност ΠΈΠ·Π²ΠΎΡ’Π΅ΡšΠ° рСалистичних Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈΡ… ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π° самог процСса. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ΅ ΠΎΠ²ΠΎΠ³ процСса Π½Π°Ρ˜Ρ‡Π΅ΡˆΡ›Π΅ ΡƒΠΊΡ™ΡƒΡ‡ΡƒΡ˜Π΅ комплСкснС конститутивнС ΠΌΠΎΠ΄Π΅Π»Π΅ са Π²Π΅Π»ΠΈΠΊΠΈΠΌ Π±Ρ€ΠΎΡ˜Π΅ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π°. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π΅ ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΈΡΠ°ΡšΠ° ΠΎΠ²ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π°, којС су Ρ‚Ρ€Π΅Π½ΡƒΡ‚Π½ΠΎ Ρƒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈ,Π·Π°Ρ…Ρ‚Π΅Π²Π°Ρ˜Ρƒ ΠΈΠ·Π²ΠΎΡ’Π΅ΡšΠ΅ Π½ΠΈΠ·Π° дСструктивних тСстова Π½Π° отпрСску. Овакав приступ јС Π·Π°Ρ…Ρ‚Π΅Π²Π°Π½ ΠΈ Π½Π΅ΠΏΡ€ΠΈΠ»Π°Π³ΠΎΡ’Π΅Π½ Π·Π° рутинску ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜ΡΠΊΡƒ ΠΏΡ€ΠΈΠΌΠ΅Π½Ρƒ. Π£ ΠΎΠΊΠ²ΠΈΡ€Ρƒ ΠΎΠ²Π΅ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½Π° јС Π°Π»Ρ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π°,са Π½ΠΈΠ·ΠΎΠΌ прСдности ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ°Π²Π°ΡšΡƒ описаног ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π°, заснована Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈ ΠΈΠ½Π²Π΅Ρ€Π·Π½ΠΈΡ… Π°Π½Π°Π»ΠΈΠ·Π°.РазвијСна ΠΌΠ΅Ρ‚ΠΎΠ΄Π° користи ΠΊΠ°ΠΎ СкспСримСнталнС ΠΏΠΎΠ΄Π°Ρ‚ΠΊΠ΅ искључиво ΠΎΠ½Π΅ врСдности којС сС ΠΌΠΎΠ³Ρƒ ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚ΠΈ Ρƒ Ρ‚ΠΎΠΊΡƒ процСса сабијања, Ρ‡ΠΈΠΌΠ΅ јС искључСна ΠΏΠΎΡ‚Ρ€Π΅Π±Π° Π·Π° ΡΠΏΡ€ΠΎΠ²ΠΎΡ’Π΅ΡšΠ΅ΠΌ дСструктивних ΠΈΡΠΏΠΈΡ‚ΠΈΠ²Π°ΡšΠ°Π½Π° отпрСску.Π£ ΠΎΠΊΠ²ΠΈΡ€Ρƒ Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°Π½Π° јС Ρ†ΠΈΡ™Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π° која ΠΊΠ²Π°Π½Ρ‚ΠΈΡ„ΠΈΠΊΡƒΡ˜Π΅ дискрСпанцу ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ СкспСримСнтално ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΡ…,ΠΈ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Ρ˜ΡƒΡ›ΠΈΡ… Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈ Π΄ΠΎΠ±ΠΈΡ˜Π΅Π½ΠΈΡ… врСдности.Π’Π°ΠΊΠΎ јС процСс ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅ конститутивних ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° свСдСн Π½Π° ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ΅ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°Π½Π΅ Ρ†ΠΈΡ™Π½Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅.Како Π±ΠΈ сС ΠΎΠ±Π΅Π·Π±Π΅Π΄ΠΈΠ»Π° ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›Π° осСтљивост СкспСримСнтално ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΡ… врСдности Π½Π° Ρ‚Ρ€Π°ΠΆΠ΅Π½Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π΅Ρ€Π΅,дСфинисанС су посСбнС Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Π΅ отпрСсака ΠΊΠ°ΠΎ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ Π΄Π΅Ρ‚Π°Ρ™Π½Π΅ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜ΡΠΊΠ΅ Π°Π½Π°Π»ΠΈΠ·Π΅.Π’ΠΈΠΌΠ΅ јС Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°Π½ СкспСримСнтлани ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ» који Ρ‚Π°Ρ‡Π½ΠΎ Π΄Π΅Ρ„ΠΈΠ½ΠΈΡˆΠ΅ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Ρƒ отпрСсака,ΠΈΠ·Π±ΠΎΡ€ СкспСримСнталних врСдности,ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Ρƒ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›ΠΈΡ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚Π°ΠΌΠ° ΠΈ Ρ†ΠΈΡ™Ρƒ аутоматског добијања Ρ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΡ… конститутивних ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π°. РазвијСна ΠΌΠ΅Ρ‚ΠΎΠ΄Π° јС тСстирана Π½Π° Ρ€Π΅ΡˆΠ°Π²Π°ΡšΡƒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅ ”Drucker-PragerCap” конститутивног ΠΌΠΎΠ΄Π΅Π»Π°,који сС чСсто ΠΏΡ€ΠΈΠΌΠ΅ΡšΡƒΡ˜Π΅ Ρƒ ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π°ΠΌΠ° процСса сабијања ΠΏΡ€Π°Ρ…Π°. Π’Π΅ΡΡ‚ΠΈΡ€Π°ΡšΠ΅ јС ΡƒΠΊΡ™ΡƒΡ‡ΠΈΠ»ΠΎ ΠΈ ΠΎΠ±ΠΈΠΌΠ½Ρƒ СкспСримСнталну ΠΊΠ°ΠΌΠΏΠ°ΡšΡƒ ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ дСструктивних тСстова Π½Π° отпрСсцима, Ρ‡ΠΈΠΌΠ΅ су добијСнС Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½Π΅ врСдности, ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Ρ™Π΅Π½Π΅ ΠΊΠ°ΠΎ Π±Π°Π·Π° Π·Π° ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅. Допунска Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π° ΡΠ°ΡΡ‚ΠΎΡ˜Π°Π»Π° сС Ρƒ ΡΠΈΠΌΡƒΠ»ΠΈΡ€Π°ΡšΡƒ комплСксних Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Π°, ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ конститутивних ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° Π΄ΠΎΠ±ΠΈΡ˜Π΅Π½ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° јС ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π° ΠΈ Π½Π° ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Ρƒ слоТСнијСг конститутивног ΠΌΠΎΠ΄Π΅Π»Π° који користи ”Bigoni-Piccolroaz” ΠΌΠΎΠ΄Π΅Π» пластичности. Ово прСдставља Π½ΠΎΠ² ΠΈ ΠΈΠ·Ρ€Π°Π·ΠΈΡ‚ΠΎ комплСксан конститутивни ΠΌΠΎΠ΄Π΅Π», ΠΏΠ° јС њСгова Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ° ΠΈΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Π° Ρ€Π΅Π·ΡƒΠ»Ρ‚ΠΈΡ€Π°Π»Π° нСстабилним Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈΠΌ ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π°ΠΌΠ°, Ρ‡ΠΈΠ½Π΅Ρ›ΠΈ Ρ†ΠΈΡ™Π½Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Ρƒ дисконтинуалном. ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ°Π²Π°ΡšΡƒ ΠΎΠ²ΠΎΠ³ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅, ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π° јС ΠΈΠ·Π²Ρ€ΡˆΠ΅Π½Π° ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠΌ β€žΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡ΠΊΠΈΡ…Π°Π»Π³ΠΎΡ€ΠΈΡ‚Π°ΠΌΠ°β€œ,ΡƒΠ· Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½ΠΈ Ρ€Π΅Π΄ΡƒΠΊΠΎΠ²Π°Π½ΠΈ ΠΌΠΎΠ΄Π΅Π» Π·Π° Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ΅ ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π΅ тСста, Ρ‡ΠΈΠΌΠ΅ јС постигнуто Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ смањСњС ΠΊΠΎΠΌΠΏΡ˜ΡƒΡ‚Π΅Ρ€ΡΠΊΠΎΠ³ Π²Ρ€Π΅ΠΌΠ΅Π½Π° ΠΏΡ€ΠΈΠΈΠ·Π²ΠΎΡ’Π΅ΡšΡƒ Π½Π΅Π»ΠΈΠ½Π΅Π°Ρ€Π½ΠΈΡ… ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π°. На самом ΠΊΡ€Π°Ρ˜Ρƒ, ΡƒΠΏΠΎΡ€Π΅Ρ’Π΅Π½ΠΈ су Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ добијСни ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ јСдног ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠ³ конститутивног ΠΌΠΎΠ΄Π΅Π»Π° ΡƒΠ· Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π΅ смСрницС ΠΎ Π³Ρ€ΡƒΠΏΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π½Π° којима ΠΈΡ… јС ΠΌΠΎΠ³ΡƒΡ›Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΠΈ са Π·Π°Π΄ΠΎΠ²ΠΎΡ™Π°Π²Π°Ρ˜ΡƒΡ›ΠΎΠΌ Ρ‚Π°Ρ‡Π½ΠΎΡˆΡ›Ρƒ

    Reduced order numerical modeling for calibration of complex constitutive models in powder pressing simulations

    No full text
    Numerical simulations of different ceramic production phases often involve complex constitutive models, with difficult calibration process, relying on a large number of experiments. Methodological developments, proposed in present paper regarding this calibration problem can be outlined as follows: assessment of constitutive parameters is performed through inverse analysis procedure, centered on minimization of discrepancy function which quantifies the difference between measurable quantities and their computed counterpart. Resulting minimization problem is solved through genetic algorithms, while the computational burden is made consistent with constraints of routine industrial applications by exploiting Reduced Order Model (ROM) based on proper orthogonal decomposition. Throughout minimization, a gradual enrichment of designed ROM is used, by including additional simulations. Such strategy turned out to be beneficial when applied to models with a large number of parameters. Developed procedure seems to be effective when dealing with complex constitutive models, that can give rise to non-continuous discrepancy function due to the numerical instabilities. Proposed approach is tested and experimentally validated on the calibration of modified Drucker-Prager CAP model, frequently adopted for ceramic powder pressing simulations. Assessed values are compared with those obtained by traditional, time-consuming tests, performed on pressed green bodies

    A Comprehensive Review on Cucurbits Yellow Stunting Disorder Virus (CYSDV) and their Management

    No full text
    Cucurbit Yellow Stunting Disorder Virus (CYSDV) represents a significant threat to global agriculture, particularly impacting the cultivation of cucurbit crops such as melons, squashes, and cucumbers. This comprehensive review explores the various dimensions of CYSDV, including its taxonomy, epidemiology, pathogenesis, diagnostic methods, management, ongoing research, and the broader social and economic implications. Beginning with an examination of CYSDV's classification and morphology, the review delineates the geographical distribution of the virus, its host range, transmission vectors, and environmental factors influencing its spread. It also outlines the mechanisms of infection, stages of disease development, symptoms in various cucurbit species, and the economic impact of the disease. The discussion extends to both traditional and molecular diagnostic techniques and the associated challenges. Different strategies for managing and controlling CYSDV are highlighted, including cultural practices, chemical methods, biological control, and integrated pest management approaches. The review emphasizes ongoing research initiatives and future perspectives in CYSDV research, considering technological innovations and potential limitations. The final sections focus on the broader social and economic context, exploring the impact of CYSDV on small and large-scale farming, international trade considerations, community engagement, and government initiatives. Through an integrated analysis, this review provides valuable insights into the multifaceted nature of CYSDV, its influence on agriculture, and the wider societal dynamics. The conclusion underscores the necessity of a coordinated, comprehensive approach that leverages scientific research, international collaboration, community involvement, and governmental support to address the challenges posed by CYSDV. Understanding the complexities of this virus is essential for developing effective strategies to ensure food security and economic stability in regions affected by this detrimental plant disease
    corecore