44 research outputs found

    Therapeutic radiological interventional procedures in hepatocellular carcinoma

    Get PDF
    Background: To improve the survival rate of patients with hepatocellular carcinoma (HCC) in whom surgery is not possible, various methods have been developed employing angiographic and percutaneous techniques. We analyzed our experience with various percutaneous therapeutic interventional techniques done for HCC in our center. Methods: Sixty-one patients with inoperable HCC (mean age 48.9 [SD 13.8] y; 47 men) were treated between January 1997 and December 2000 by transcatheter arterial chemoembolization (TACE) alone (22), TACE with percutaneous alcohol injection (PEI) (20), transcatheter arterial embolization (TAE) with steel coils and gel foam for gastrointestinal bleed (7), percutaneous radiofrequency ablation (1), percutaneous preoperative right portal vein embolization (3) and percutaneous preoperative tumor embolization to reduce blood loss at surgery (8). Results: In 42 patients treated by TACE and PEI and TACE alone, tumor necrosis was scored; over 50% necrosis was seen only after six and nine months in both treatment groups. The survival rates after six and nine months and the median survival were similar in the two groups. Of 7 cases treated with TAE with steel coils and gel foam, the gastrointestinal bleeding stopped in four; in the other three, bleeding did not stop completely although less transfusion was required. In the patient treated by radiofrequency ablation, follow-up contrast-enhanced CT did not show enhancing tumor mass. We noted left lobe enlargement after percutaneous preoperative right portal vein embolization, prior to right hepatectomy. Conclusion: In patients with HCC not amenable to surgical intervention, a variety of percutaneous therapeutic interventional techniques may be used

    Identification of novel resistant sources for ascochyta blight (Ascochyta rabiei) in chickpea

    Get PDF
    Chickpea (Cicer arietinum L.) is the second largest pulse crop grown worldwide and ascochyta blight caused by Ascochyta rabiei (Pass.) Labr. is the most devastating disease of the crop in all chickpea growing areas across the continents. The pathogen A. rabiei is highly variable. The resistant sources available are not sufficient and new sources needs to be identified from time to time as resistance breakdown in existing chickpea varieties is very frequent due to fast evolution of new pathotypes of the pathogen. Therefore, this work was undertaken to evaluate the existing chickpea germplasm diversity conserved in Indian National Genebank against the disease under artificial epiphytotic conditions. An artificial standard inoculation procedure was followed for uniform spread of the pathogen. During the last five winter seasons from 2014–15 to 2018–19, a total of 1,970 accessions have been screened against the disease and promising accessions were identified and validated. Screening has resulted in identification of some promising chickpea accessions such as IC275447, IC117744, EC267301, IC248147 and EC220109 which have shown the disease resistance (disease severity score �3) in multiple seasons and locations. Promising accessions can serve as the potential donors in chickpea improvement programs. The frequency of resistant and moderately resistant type accessions was comparatively higher in accessions originated from Southwest Asian countries particularly Iran and Syria than the accessions originated from Indian sub-continent. Further large scale screening of chickpea germplasm originated from Southwest Asia may result in identifying new resistant sources for the disease

    Natural Terpenes Prevent Mitochondrial Dysfunction, Oxidative Stress and Release of Apoptotic Proteins during Nimesulide-Hepatotoxicity in Rats

    Get PDF
    Nimesulide, an anti-inflammatory and analgesic drug, is reported to cause severe hepatotoxicity. In this study, molecular mechanisms involved in deranged oxidant-antioxidant homeostasis and mitochondrial dysfunction during nimesulide-induced hepatotoxicity and its attenuation by plant derived terpenes, camphene and geraniol has been explored in male Sprague-Dawley rats. Hepatotoxicity due to nimesulide (80 mg/kg BW) was evident from elevated SGPT, SGOT, bilirubin and histo-pathological changes. Antioxidants and key redox enzymes (iNOS, mtNOS, Cu/Zn-SOD, Mn-SOD, GPx and GR) were altered significantly as assessed by their mRNA expression, Immunoblot analysis and enzyme activities. Redox imbalance along with oxidative stress was evident from decreased NAD(P)H and GSH (56% and 74% respectively; P<0.001), increased superoxide and secondary ROS/RNS generation along with oxidative damage to cellular macromolecules. Nimesulide reduced mitochondrial activity, depolarized mitochondria and caused membrane permeability transition (MPT) followed by release of apoptotic proteins (AIF; apoptosis inducing factor, EndoG; endonuclease G, and Cyto c; cytochrome c). It also significantly activated caspase-9 and caspase-3 and increased oxidative DNA damage (level of 8-Oxoguanine glycosylase; P<0.05). A combination of camphene and geraniol (CG; 1∶1), when pre-administered in rats (10 mg/kg BW), accorded protection against nimesulide hepatotoxicity in vivo, as evident from normalized serum biomarkers and histopathology. mRNA expression and activity of key antioxidant and redox enzymes along with oxidative stress were also normalized due to CG pre-treatment. Downstream effects like decreased mitochondrial swelling, inhibition in release of apoptotic proteins, prevention of mitochondrial depolarization along with reduction in oxidized NAD(P)H and increased mitochondrial electron flow further supported protective action of selected terpenes against nimesulide toxicity. Therefore CG, a combination of natural terpenes prevented nimesulide induced cellular damage and ensuing hepatotoxicity

    Mycobacteria Exploit Host Hyaluronan for Efficient Extracellular Replication

    Get PDF
    In spite of the importance of hyaluronan in host protection against infectious organisms in the alveolar spaces, its role in mycobacterial infection is unknown. In a previous study, we found that mycobacteria interact with hyaluronan on lung epithelial cells. Here, we have analyzed the role of hyaluronan after mycobacterial infection was established and found that pathogenic mycobacteria can grow by utilizing hyaluronan as a carbon source. Both mouse and human possess 3 kinds of hyaluronan synthases (HAS), designated HAS1, HAS2, and HAS3. Utilizing individual HAS-transfected cells, we show that HAS1 and HAS3 but not HAS2 support growth of mycobacteria. We found that the major hyaluronan synthase expressed in the lung is HAS1, and that its expression was increased after infection with Mycobacterium tuberculosis. Histochemical analysis demonstrated that hyaluronan profoundly accumulated in the granulomatous legion of the lungs in M. tuberculosis-infected mice and rhesus monkeys that died from tuberculosis. We detected hyaluronidase activity in the lysate of mycobacteria and showed that it was critical for hyaluronan-dependent extracellular growth. Finally, we showed that L-Ascorbic acid 6-hexadecanoate, a hyaluronidase inhibitor, suppressed growth of mycobacteria in vivo. Taken together, our data show that pathogenic mycobacteria exploit an intrinsic host-protective molecule, hyaluronan, to grow in the respiratory tract and demonstrate the potential usefulness of hyaluronidase inhibitors against mycobacterial diseases

    Characterization of various acrylic fibres by infrared spectroscopy

    No full text
    71-75An attempt has been made to develop a database containing information on the infrared spectral characteristics, composition and morphological features of different types of acrylic-based fibres with a view to provide an alternative and quick method of their identification, classification and gradation. This is based on a detailed infrared spectral and morphological study on different acrylic-based fibres showing variation in terms of type (monocomponent, bicomponent and special acrylic fibres), process (wet spun/dry spun) and composition. The availability of optic fibre-based instruments has led to the ease of on site IR spectral measurements, even away from the main spectrometer and also replaces the presently used diffuse reflectance infrared Fourier transform measurement accessory. The study, thus, demonstrates the capability of IR spectroscopy as a semi-quantitative tool for fast identification/gradation of acrylic-based fibres on routine basis

    Identification of novel resistant sources for ascochyta blight (Ascochyta rabiei) in chickpea.

    No full text
    Chickpea (Cicer arietinum L.) is the second largest pulse crop grown worldwide and ascochyta blight caused by Ascochyta rabiei (Pass.) Labr. is the most devastating disease of the crop in all chickpea growing areas across the continents. The pathogen A. rabiei is highly variable. The resistant sources available are not sufficient and new sources needs to be identified from time to time as resistance breakdown in existing chickpea varieties is very frequent due to fast evolution of new pathotypes of the pathogen. Therefore, this work was undertaken to evaluate the existing chickpea germplasm diversity conserved in Indian National Genebank against the disease under artificial epiphytotic conditions. An artificial standard inoculation procedure was followed for uniform spread of the pathogen. During the last five winter seasons from 2014-15 to 2018-19, a total of 1,970 accessions have been screened against the disease and promising accessions were identified and validated. Screening has resulted in identification of some promising chickpea accessions such as IC275447, IC117744, EC267301, IC248147 and EC220109 which have shown the disease resistance (disease severity score ≤3) in multiple seasons and locations. Promising accessions can serve as the potential donors in chickpea improvement programs. The frequency of resistant and moderately resistant type accessions was comparatively higher in accessions originated from Southwest Asian countries particularly Iran and Syria than the accessions originated from Indian sub-continent. Further large scale screening of chickpea germplasm originated from Southwest Asia may result in identifying new resistant sources for the disease

    Discovery of a small-molecule inhibitor of specific serine residue BAD phosphorylation

    No full text
    Despite the initial success of therapeutic agents targeting the RAS/MAP kinase and PI3K/AKT/mTOR signalling networks in oncology, development of acquired resistance to such therapeutics represents a significant challenge in successful disease management. BCL-2–associated death promoter (BAD) is a common and core downstream molecule for both the RAS/MAP kinase and PI3K/AKT/mTOR pathways and regulates cancer cell survival. In its unphosphorylated state, BAD sequesters BCL-2, which results in BAK/BAX activation and apoptosis. Herein, we identified and characterized a small molecule which specifically inhibits BAD phosphorylation on Ser99. This molecule may be therapeutically useful, either alone or in combination, to delay or obviate the development of resistance to other therapeutic agents.Human BCL-2–associated death promoter (hBAD) is an apoptosis-regulatory protein mediating survival signals to carcinoma cells upon phosphorylation of Ser99, among other residues. Herein, we screened multiple small-molecule databases queried in a Laplacian-modified naive Bayesian-based cheminformatics platform and identified a Petasis reaction product as a site-specific inhibitor for hBAD phosphorylation. Based on apoptotic efficacy against mammary carcinoma cells, N-cyclopentyl-3-((4-(2,3-dichlorophenyl) piperazin-1-yl) (2-hydroxyphenyl) methyl) benzamide (NPB) was identified as a potential lead compound. In vitro biochemical analyses demonstrated that NPB inhibited the phosphorylation of hBAD specifically on Ser99. NPB was observed to exert this effect independently of AKT and other kinase activities despite the demonstration of AKT-mediated BAD-Ser99 phosphorylation. Using a structure-based bioinformatics platform, we observed that NPB exhibited predicted interactions with hBAD in silico and verified the same by direct binding kinetics. NPB reduced phosphorylation of BAD-Ser99 and enhanced caspase 3/7 activity with associated loss of cell viability in various human cancer cell lines derived from mammary, endometrial, ovarian, hepatocellular, colon, prostatic, and pancreatic carcinoma. Furthermore, by use of a xenograft model, it was observed that NPB, as a single agent, markedly diminished BAD phosphorylation in tumor tissue and significantly inhibited tumor growth. Similar doses of NPB utilized in acute toxicity studies in mice did not exhibit significant effects. Hence, we report a site-specific inhibitor of BAD phosphorylation with efficacy in tumor models
    corecore