593 research outputs found

    On the Wang-Landau Method for Off-Lattice Simulations in the "Uniform" Ensemble

    Full text link
    We present a rigorous derivation for off-lattice implementations of the so-called "random-walk" algorithm recently introduced by Wang and Landau [PRL 86, 2050 (2001)]. Originally developed for discrete systems, the algorithm samples configurations according to their inverse density of states using Monte-Carlo moves; the estimate for the density of states is refined at each simulation step and is ultimately used to calculate thermodynamic properties. We present an implementation for atomic systems based on a rigorous separation of kinetic and configurational contributions to the density of states. By constructing a "uniform" ensemble for configurational degrees of freedom--in which all potential energies, volumes, and numbers of particles are equally probable--we establish a framework for the correct implementation of simulation acceptance criteria and calculation of thermodynamic averages in the continuum case. To demonstrate the generality of our approach, we perform sample calculations for the Lennard-Jones fluid using two implementation variants and in both cases find good agreement with established literature values for the vapor-liquid coexistence locus.Comment: 21 pages, 4 figure

    Crowding of Polymer Coils and Demixing in Nanoparticle-Polymer Mixtures

    Full text link
    The Asakura-Oosawa-Vrij (AOV) model of colloid-polymer mixtures idealizes nonadsorbing polymers as effective spheres that are fixed in size and impenetrable to hard particles. Real polymer coils, however, are intrinsically polydisperse in size (radius of gyration) and may be penetrated by smaller particles. Crowding by nanoparticles can affect the size distribution of polymer coils, thereby modifying effective depletion interactions and thermodynamic stability. To analyse the influence of crowding on polymer conformations and demixing phase behaviour, we adapt the AOV model to mixtures of nanoparticles and ideal, penetrable polymer coils that can vary in size. We perform Gibbs ensemble Monte Carlo simulations, including trial nanoparticle-polymer overlaps and variations in radius of gyration. Results are compared with predictions of free-volume theory. Simulation and theory consistently predict that ideal polymers are compressed by nanoparticles and that compressibility and penetrability stabilise nanoparticle-polymer mixtures.Comment: 18 pages, 4 figure

    Thermodynamics of Electrolytes on Anisotropic Lattices

    Full text link
    The phase behavior of ionic fluids on simple cubic and tetragonal (anisotropic) lattices has been studied by grand canonical Monte Carlo simulations. Systems with both the true lattice Coulombic potential and continuous-space 1/r1/r electrostatic interactions have been investigated. At all degrees of anisotropy, only coexistence between a disordered low-density phase and an ordered high-density phase with the structure similar to ionic crystal was found, in contrast to recent theoretical predictions. Tricritical parameters were determined to be monotonously increasing functions of anisotropy parameters which is consistent with theoretical calculations based on the Debye-H\"uckel approach. At large anisotropies a two-dimensional-like behavior is observed, from which we estimated the dimensionless tricritical temperature and density for the two-dimensional square lattice electrolyte to be Ttri=0.14T^*_{tri}=0.14 and ρtri=0.70\rho^*_{tri} = 0.70.Comment: submitted to PR

    Self-assembled plasmonic templates produced by microwave annealing: applications to surface-enhanced Raman scattering

    Get PDF
    Perhaps the simplest method for creating metal nanoparticles on a substrate is by driving their self-assembly with the thermal annealing of a thin metal film. By properly tuning the annealing parameters one hopes to discover a recipe that allows the pre-determined design of the NP arrangement. However, thermal treatment is known for detrimental effects and is not really the manufacturer's route of choice when it comes to large-scale applications. An alternative method is the use of microwave annealing, a method that has never been applied for metal processing, due to the high reflectance of microwave radiation at the surface of a metal. However, in this work we challenge the widely used nanostructuring methods by proving the microwave's annealing ability to produce plasmonic templates, out of extremely thin metal films, by simply using a domestic microwave oven apparatus. We show that this process is generic and independent of the deposition method used for the metal and we further quantify the suitability of these plasmonic templates for use in surface-enhanced Raman scattering applications

    Coexistence and Criticality in Size-Asymmetric Hard-Core Electrolytes

    Get PDF
    Liquid-vapor coexistence curves and critical parameters for hard-core 1:1 electrolyte models with diameter ratios lambda = sigma_{-}/\sigma_{+}=1 to 5.7 have been studied by fine-discretization Monte Carlo methods. Normalizing via the length scale sigma_{+-}=(sigma_{+} + sigma_{-})/2 relevant for the low densities in question, both Tc* (=kB Tc sigma_{+-}/q^2 and rhoc* (= rhoc sigma _{+-}^{3}) decrease rapidly (from ~ 0.05 to 0.03 and 0.08 to 0.04, respectively) as lambda increases. These trends, which unequivocally contradict current theories, are closely mirrored by results for tightly tethered dipolar dimers (with Tc* lower by ~ 0-11% and rhoc* greater by 37-12%).Comment: 4 pages, 5 figure

    Optimized intermolecular potential for nitriles based on Anisotropic United Atoms model

    Get PDF
    An extension of the Anisotropic United Atoms intermolecular potential model is proposed for nitriles. The electrostatic part of the intermolecular potential is calculated using atomic charges obtained by a simple Mulliken population analysis. The repulsion-dispersion interaction parameters for methyl and methylene groups are taken from transferable AUA4 literature parameters [Ungerer et al., J. Chem. Phys., 2000, 112, 5499]. Non-bonding Lennard-Jones intermolecular potential parameters are regressed for the carbon and nitrogen atoms of the nitrile group (–C≡N) from experimental vapor-liquid equilibrium data of acetonitrile. Gibbs Ensemble Monte Carlo simulations and experimental data agreement is very good for acetonitrile, and better than previous molecular potential proposed by Hloucha et al. [J. Chem. Phys., 2000, 113, 5401]. The transferability of the resulting potential is then successfully tested, without any further readjustment, to predict vapor-liquid phase equilibrium of propionitrile and n-butyronitrile

    Dipolar origin of the gas-liquid coexistence of the hard-core 1:1 electrolyte model

    Get PDF
    We present a systematic study of the effect of the ion pairing on the gas-liquid phase transition of hard-core 1:1 electrolyte models. We study a class of dipolar dimer models that depend on a parameter R_c, the maximum separation between the ions that compose the dimer. This parameter can vary from sigma_{+/-} that corresponds to the tightly tethered dipolar dimer model, to R_c --> infinity, that corresponds to the Stillinger-Lovett description of the free ion system. The coexistence curve and critical point parameters are obtained as a function of R_c by grand canonical Monte Carlo techniques. Our results show that this dependence is smooth but non-monotonic and converges asymptotically towards the free ion case for relatively small values of R_c. This fact allows us to describe the gas-liquid transition in the free ion model as a transition between two dimerized fluid phases. The role of the unpaired ions can be considered as a perturbation of this picture.Comment: 16 pages, 13 figures, submitted to Physical Review

    Computational angular oscillatory motion for a .50 caliber bullet type firing from a helicopter machine gun

    Get PDF
    Abstract The present study investigates the epicyclic pitching and yawing motion phenomenon of spinning symmetric projectiles applying the 6-DOF free flight dynamic simulation modelling for small-yaw flat-fire trajectories. The computational results are compared with the corresponding classical second order linear differential solution. The ammunition will be used is the .50 API M8 bullet tfiring from M2 machine gun launched horizontally from different firing angles on high-speed subsonic aircraft (helicopter). This analysis includes mean constant coefficients of the most significant aerodynamic forces, moments and Magnus effects, which have been taken from official tabulated database
    corecore