We present a rigorous derivation for off-lattice implementations of the
so-called "random-walk" algorithm recently introduced by Wang and Landau [PRL
86, 2050 (2001)]. Originally developed for discrete systems, the algorithm
samples configurations according to their inverse density of states using
Monte-Carlo moves; the estimate for the density of states is refined at each
simulation step and is ultimately used to calculate thermodynamic properties.
We present an implementation for atomic systems based on a rigorous separation
of kinetic and configurational contributions to the density of states. By
constructing a "uniform" ensemble for configurational degrees of freedom--in
which all potential energies, volumes, and numbers of particles are equally
probable--we establish a framework for the correct implementation of simulation
acceptance criteria and calculation of thermodynamic averages in the continuum
case. To demonstrate the generality of our approach, we perform sample
calculations for the Lennard-Jones fluid using two implementation variants and
in both cases find good agreement with established literature values for the
vapor-liquid coexistence locus.Comment: 21 pages, 4 figure