55,159 research outputs found

    Clerocidin selectively modifies the gyrase-DNA gate to induce irreversible and reversible DNA damage

    Get PDF
    Clerocidin (CL), a microbial diterpenoid, reacts with DNA via its epoxide group and stimulates DNA cleavage by type II DNA topoisomerases. The molecular basis of CL action is poorly understood. We establish by genetic means that CL targets DNA gyrase in the gram-positive bacterium Streptococcus pneumoniae, and promotes gyrase-dependent single- and double-stranded DNA cleavage in vitro. CL-stimulated DNA breakage exhibited a strong preference for guanine preceding the scission site (-1 position). Mutagenesis of -1 guanines to A, C or T abrogated CL cleavage at a strong pBR322 site. Surprisingly, for double-strand breaks, scission on one strand consistently involved a modified (piperidine-labile) guanine and was not reversed by heat, salt or EDTA, whereas complementary strand scission occurred at a piperidine-stable -1 nt and was reversed by EDTA. CL did not induce cleavage by a mutant gyrase (GyrA G79A) identified here in CL-resistant pneumococci. Indeed, mutations at G79 and at the neighbouring S81 residue in the GyrA breakage-reunion domain discriminated poisoning by CL from that of antibacterial quinolones. The results suggest a novel mechanism of enzyme inhibition in which the -1 nt at the gyrase-DNA gate exhibit different CL reactivities to produce both irreversible and reversible DNA damage

    Electrical characteristics of amorphous iron-tungsten contacts on silicon

    Get PDF
    The electrical characteristics of amorphous Fe-W contacts have been determined on both p-type and n-type silicon. The amorphous films were obtained by cosputtering from a composite target. Contact resistivities, pc=1×10^−7 and pc=2.8×10^−6, were measured on n+ and p+ silicon, respectively. These values remain constant after thermal treatment up to at least 500°C. A barrier height, φBn=0.61 V, was measured on n-type silicon

    Impurity spin textures across conventional and deconfined quantum critical points of two-dimensional antiferromagnets

    Full text link
    We describe the spin distribution in the vicinity of a non-magnetic impurity in a two-dimensional antiferromagnet undergoing a transition from a magnetically ordered Neel state to a paramagnet with a spin gap. The quantum critical ground state in a finite system has total spin S=1/2 (if the system without the impurity had an even number of S=1/2 spins), and recent numerical studies in a double layer antiferromagnet (K. H.Hoglund et al., cond-mat/0611418) have shown that the spin has a universal spatial form delocalized across the entire sample. We present the field theory describing the uniform and staggered magnetizations in this spin texture for two classes of antiferromagnets: (i) the transition from a Neel state to a paramagnet with local spin singlets, in models with an even number of S=1/2 spins per unit cell, which are described by a O(3) Landau-Ginzburg-Wilson field theory; and (ii) the transition from a Neel state to a valence bond solid, in antiferromagnets with a single S=1/2 spin per unit cell, which are described by a deconfined field theory of spinons.Comment: 30 pages, 9 figure

    Josephson scanning tunneling microscopy

    Full text link
    We propose a set of scanning tunneling microscopy experiments in which the surface of superconductor is scanned by a superconducting tip. Potential capabilities of such experimental setup are discussed. Most important anticipated results of such an experiment include the position-resolved measurement of the superconducting order parameter and the possibility to determine the nature of the secondary component of the order parameter at the surface. The theoretical description based on the tunneling Hamiltonian formalism is presented.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    The induced representations of Brauer algebra and the Clebsch-Gordan coefficients of SO(n)

    Get PDF
    Induced representations of Brauer algebra Df(n)D_{f}(n) from Sf1×Sf2S_{f_{1}}\times S_{f_{2}} with f1+f2=ff_{1}+f_{2}=f are discussed. The induction coefficients (IDCs) or the outer-product reduction coefficients (ORCs) of Sf1×Sf2↑Df(n)S_{f_{1}}\times S_{f_{2}}\uparrow D_{f}(n) with f≤4f\leq 4 up to a normalization factor are derived by using the linear equation method. Weyl tableaus for the corresponding Gel'fand basis of SO(n) are defined. The assimilation method for obtaining CG coefficients of SO(n) in the Gel'fand basis for no modification rule involved couplings from IDCs of Brauer algebra are proposed. Some isoscalar factors of SO(n)⊃SO(n−1)SO(n)\supset SO(n-1) for the resulting irrep [λ1, λ2, λ3, λ4,0˙][\lambda_{1},~\lambda_{2},~ \lambda_{3},~\lambda_{4},\dot{0}] with $\sum\limits_{i=1}^{4}\lambda_{i}\leq .Comment: 48 pages latex, submitted to Journal of Phys.

    The effect of electromechanical coupling on the strain in AlGaN/GaN heterojunction field effect transistors

    Full text link
    The strain in AlGaN/GaN heterojunction field-effect transistors (HFETs) is examined theoretically in the context of the fully-coupled equation of state for piezoelectric materials. Using a simple analytical model, it is shown that, in the absence of a two-dimensional electron gas (2DEG), the out-of-plane strain obtained without electromechanical coupling is in error by about 30% for an Al fraction of 0.3. This result has consequences for the calculation of quantities that depend directly on the strain tensor. These quantities include the eigenstates and electrostatic potential in AlGaN/GaN heterostructures. It is shown that for an HFET, the electromechanical coupling is screened by the 2DEG. Results for the electromechanical model, including the 2DEG, indicate that the standard (decoupled) strain model is a reasonable approximation for HFET calculataions. The analytical results are supported by a self-consistent Schr\"odinger-Poisson calculation that includes the fully-coupled equation of state together with the charge-balance equation.Comment: 6 figures, revte

    Temperature dependence of the impurity-induced resonant state in Zn-doped Bi_2Sr_2CaCu_2O8+δ_{8+\delta} by Scanning Tunneling Spectroscopy

    Full text link
    We report on the temperature dependence of the impurity-induced resonant state in Zn-doped Bi_2Sr_2CaCu_2O8+δ_{8+\delta} by scanning tunneling spectroscopy at 30 mK < T < 52 K. It is known that a Zn impurity induces a sharp resonant peak in tunnel spectrum at an energy close to the Fermi level. We observed that the resonant peak survives up to 52 K. The peak broadens with increasing temperature, which is explained by the thermal effect. This result provides information to understand the origin of the resonant peak.Comment: 4 pages, 3 figures, to appear in Phys. Rev.

    Nanoscale Impurity Structures on the Surface of dx2−y2d_{x^2-y^2}-wave Superconductors

    Full text link
    We study the effects of nanoscale impurity structures on the local electronic structure of dx2−y2d_{x^2-y^2}-wave superconductors. We show that the interplay between the momentum dependence of the superconducting gap, the geometry of the nanostructure and its orientation gives rise to a series of interesting quantum effects. Among these are the emergence of a zero bias conductance peak in the superconductor's density of states and the suppression of impurity states for certain nanostructures. The latter effect can be used to screen impurity resonances in the superconducting state.Comment: 4 pages, 5 figure

    Upper-critical dimension in a quantum impurity model: Critical theory of the asymmetric pseudogap Kondo problem

    Full text link
    Impurity moments coupled to fermions with a pseudogap density of states display a quantum phase transition between a screened and a free moment phase upon variation of the Kondo coupling. We describe the universal theory of this transition for the experimentally relevant case of particle-hole asymmetry. The theory takes the form of a crossing between effective singlet and doublet levels, interacting with low-energy fermions. Depending on the pseudogap exponent, this interaction is either relevant or irrelevant under renormalization group transformations, establishing the existence of an upper-critical "dimension" in this impurity problem. Using perturbative renormalization group techniques we compute various critical properties and compare with numerical results.Comment: 4 pages, 2 figs, (v2) title changed, log corrections for r=1 adde
    • …
    corecore