695 research outputs found

    B3Al4+: A Three-Dimensional Molecular Reuleaux Triangle

    Get PDF
    We systematically explore the potential energy surface of the B3Al4+ combination of atoms. The putative global minimum corresponds to a structure formed by an Al4 square facing a B3 triangle. Interestingly, the dynamical behavior can be described as a Reuleaux molecular triangle since it involves the rotation of the B3 triangle at the top of the Al4 square. The molecular dynamics simulations, corroborating with the very small rotational barriers of the B3 triangle, show its nearly free rotation on the Al4 ring, confirming the fluxional character of the cluster. Moreover, while the chemical bonding analysis suggests that the multicenter interaction between the two fragments determines its fluxionality, the magnetic response analysis reveals this cluster as a true and fully three-dimensional aromatic system

    B3Al4+ : A Three-Dimensional Molecular Reuleaux Triangle

    Get PDF
    We systematically explore the potential energy surface of the B3Al4+ combination of atoms. The putative global minimum corresponds to a structure formed by an Al-4 square facing a B-3 triangle. Interestingly, the dynamical behavior can be described as a Reuleaux molecular triangle since it involves the rotation of the B-3 triangle at the top of the Al-4 square. The molecular dynamics simulations, corroborating with the very small rotational barriers of the B-3 triangle, show its nearly free rotation on the Al-4 ring, confirming the fluxional character of the cluster. Moreover, while the chemical bonding analysis suggests that the multicenter interaction between the two fragments determines its fluxionality, the magnetic response analysis reveals this cluster as a true and fully three-dimensional aromatic system.Peer reviewe

    CEACAM1 Negatively Regulates IL-1β Production in LPS Activated Neutrophils by Recruiting SHP-1 to a SYK-TLR4-CEACAM1 Complex

    Get PDF
    LPS-activated neutrophils secrete IL-1β by activation of TLR-4. Based on studies in macrophages, it is likely that ROS and lysosomal destabilization regulated by Syk activation may also be involved. Since neutrophils have abundant expression of the ITIM-containing co-receptor CEACAM1 and Gram-negative bacteria such as Neisseria utilize CEACAM1 as a receptor that inhibits inflammation, we hypothesized that the overall production of IL-1β in LPS treated neutrophils may be negatively regulated by CEACAM1. We found that LPS treated neutrophils induced phosphorylation of Syk resulting in the formation of a complex including TLR4, p-Syk, and p-CEACAM1, which in turn, recruited the inhibitory phosphatase SHP-1. LPS treatment leads to ROS production, lysosomal damage, caspase-1 activation and IL-1β secretion in neutrophils. The absence of this regulation in Ceacam1−/− neutrophils led to hyper production of IL-1β in response to LPS. The hyper production of IL-1β was abrogated by in vivo reconstitution of wild type but not ITIM-mutated CEACAM1 bone marrow stem cells. Blocking Syk activation by kinase inhibitors or RNAi reduced Syk phosphorylation, lysosomal destabilization, ROS production, and caspase-1 activation in Ceacam1−/− neutrophils. We conclude that LPS treatment of neutrophils triggers formation of a complex of TLR4 with pSyk and pCEACAM1, which upon recruitment of SHP-1 to the ITIMs of pCEACAM1, inhibits IL-1β production by the inflammasome. Thus, CEACAM1 fine-tunes IL-1β production in LPS treated neutrophils, explaining why the additional utilization of CEACAM1 as a pathogen receptor would further inhibit inflammation

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    Expression of Foxm1 Transcription Factor in Cardiomyocytes Is Required for Myocardial Development

    Get PDF
    Forkhead Box M1 (Foxm1) is a transcription factor essential for organ morphogenesis and development of various cancers. Although complete deletion of Foxm1 in Foxm1−/− mice caused embryonic lethality due to severe abnormalities in multiple organ systems, requirements for Foxm1 in cardiomyocytes remain to be determined. This study was designed to elucidate the cardiomyocyte-autonomous role of Foxm1 signaling in heart development. We generated a new mouse model in which Foxm1 was specifically deleted from cardiomyocytes (Nkx2.5-Cre/Foxm1fl/f mice). Deletion of Foxm1 from cardiomyocytes was sufficient to disrupt heart morphogenesis and induce embryonic lethality in late gestation. Nkx2.5-Cre/Foxm1fl/fl hearts were dilated with thinning of the ventricular walls and interventricular septum, as well as disorganization of the myocardium which culminated in cardiac fibrosis and decreased capillary density. Cardiomyocyte proliferation was diminished in Nkx2.5-Cre/Foxm1fl/fl hearts owing to altered expression of multiple cell cycle regulatory genes, such as Cdc25B, Cyclin B1, Plk-1, nMyc and p21cip1. In addition, Foxm1 deficient hearts displayed reduced expression of CaMKIIδ, Hey2 and myocardin, which are critical mediators of cardiac function and myocardial growth. Our results indicate that Foxm1 expression in cardiomyocytes is critical for proper heart development and required for cardiomyocyte proliferation and myocardial growth

    CD3Z Genetic Polymorphism in Immune Response to Hepatitis B Vaccination in Two Independent Chinese Populations

    Get PDF
    Vaccination against hepatitis B virus is an effective and routine practice that can prevent infection. However, vaccine-induced immunity to hepatitis B varies among individuals. CD4+ T helper cells, which play an important role in both cellular and humoral immunity, are involved in the immune response elicited by vaccination. Polymorphisms in the genes involved in stimulating the activation and proliferation of CD4+ T helper cells may influence the immune response to hepatitis B vaccination. In the first stage of the present study, a total of 111 single nucleotide polymorphisms (SNPs) in 17 genes were analyzed, using the iPLEX MassARRAY system, among 214 high responders and 107 low responders to hepatitis B vaccination. Three SNPs (rs12133337 and rs10918706 in CD3Z, rs10912564 in OX40L) were associated significantly with the immune response to hepatitis B vaccination (P = 0.008, 0.041, and 0.019, respectively). The three SNPs were analyzed further with the TaqMan-MGB or TaqMan-BHQ probe-based real-time polymerase chain reaction in another independent population, which included 1090 high responders and 636 low responders. The minor allele ‘C’ of rs12133337 continued to show an association with a lower response to hepatitis B vaccination (P = 0.033, odds radio = 1.28, 95% confidence interval = 1.01–1.61). Furthermore, in the stratified analysis for both the first and second populations, the association of the minor allele ‘C’ of rs12133337 with a lower response to hepatitis B vaccination was more prominent after individuals who were overweight or obese (body mass index ≥25 kg/m2) were excluded (1st stage: P = 0.003, 2nd stage: P = 0.002, P-combined = 9.47e-5). These findings suggest that the rs12133337 polymorphism in the CD3Z gene might affect the immune response to hepatitis B vaccination, and that a lower BMI might increase the contribution of the polymorphism to immunity to hepatitis B vaccination
    corecore