18,562 research outputs found

    A congruence involving products of qq-binomial coefficients

    Get PDF
    In this paper we establish a qq-analogue of a congruence of Sun concerning the products of binomial coefficients modulo the square of a prime.Comment: 9 page

    Pareto Boundary of the Rate Region for Single-Stream MIMO Interference Channels: Linear Transceiver Design

    Full text link
    We consider a multiple-input multiple-output (MIMO) interference channel (IC), where a single data stream per user is transmitted and each receiver treats interference as noise. The paper focuses on the open problem of computing the outermost boundary (so-called Pareto boundary-PB) of the achievable rate region under linear transceiver design. The Pareto boundary consists of the strict PB and non-strict PB. For the two user case, we compute the non-strict PB and the two ending points of the strict PB exactly. For the strict PB, we formulate the problem to maximize one rate while the other rate is fixed such that a strict PB point is reached. To solve this non-convex optimization problem which results from the hard-coupled two transmit beamformers, we propose an alternating optimization algorithm. Furthermore, we extend the algorithm to the multi-user scenario and show convergence. Numerical simulations illustrate that the proposed algorithm computes a sequence of well-distributed operating points that serve as a reasonable and complete inner bound of the strict PB compared with existing methods.Comment: 16 pages, 9 figures. Accepted for publication in IEEE Tans. Signal Process. June. 201

    Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075.

    Get PDF
    Lightweight materials are of paramount importance to reduce energy consumption and emissions in today's society. For materials to qualify for widespread use in lightweight structural assembly, they must be weldable or joinable, which has been a long-standing issue for high strength aluminum alloys, such as 7075 (AA7075) due to their hot crack susceptibility during fusion welding. Here, we show that AA7075 can be safely arc welded without hot cracks by introducing nanoparticle-enabled phase control during welding. Joints welded with an AA7075 filler rod containing TiC nanoparticles not only exhibit fine globular grains and a modified secondary phase, both which intrinsically eliminate the materials hot crack susceptibility, but moreover show exceptional tensile strength in both as-welded and post-weld heat-treated conditions. This rather simple twist to the filler material of a fusion weld could be generally applied to a wide range of hot crack susceptible materials

    Cellular Base Station Imaging for UAV Detection

    Get PDF
    © 2022 IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/As the use of unmanned aerial vehicles (UAVs) is greatly increasing, there is an emerging threat of using UAVs in infrastructure/cyber-attacks and data-eavesdropping. From the safety and security perspective, it is a timely need to build an air surveillance system that enables a seamless detection function for low-and-middle altitude flying targets. However, it is unrealistic to widely deploy classical radar stations due to the astronomical cost. Rethinking the role of cellular mobile communication networks, we desire to add a 'vision-like' capability to the widely deployed outdoor cellular base stations (BSs) to realize joint imaging and communication (JIAC) simultaneously through sharing the existing cellular communication infrastructure and spectrum. In this work, it is for the first time to systematically study and demonstrate the concept of cellular base station imaging for UAV detection, which allows a cellular BS to work like an inverse synthetic-aperture radar (ISAR) besides communication. Firstly, we provide the JIAC transmission signalling and systematic operation mechanism. Secondly, the feasibility of JIAC is investigated and analysed to support the idea of cellular base station imaging. Finally, numerical simulation evaluates the imaging performance of three typical types of cellular BSs operating at 900 MHz, 3.5 GHz and 28 GHz, respectively, which implies that cellular BS imaging works for UAV detection! Furthermore, the radar imaging function, as a new by-product, requires only a very little change to the current orthogonal frequency-division multiplexing (OFDM) communication signalling and has nearly no influence on the current communication operation and performance.Peer reviewedFinal Published versio
    • …
    corecore