11 research outputs found

    Enhancing surface finish of additively manufactured titanium and cobalt chrome elements using laser based finishing

    Get PDF
    Additive manufacturing (AM) offers the possibility of creating a complex free form object as a single element, which is not possible using traditional mechanical machining. Unfortunately the typically rough surface finish of additively manufactured parts is unsuitable for many applications. As a result AM parts must be post-processed; typically mechanically machined and/or and polished using either chemical or mechanical techniques (both of which have their limitations). Laser based polishing is based on remelting of a very thin surface layer and it offers potential as a highly repeatable, higher speed process capable of selective area polishing, and without any waste problems (no abrasives or liquids).In this paper an in-depth investigation of CW laser polishing of titanium and cobalt chrome AM elements is presented. The impact of different scanning strategies, laser parameters and initial surface condition on the achieved surface finish is evaluated

    Digital image correlation after focused ion beam micro-slit drilling: A new technique for measuring residual stresses in hardmetal components at local scale

    Get PDF
    A new method has been developed for measuring residual stresses at the surface of hardmetal components with higher spatial resolution than standard X-ray diffraction methods. It is based on measuring the surface displacements produced when stresses are partially released by machining a thin slit perpendicularly to the tested surface. Slit machining is carried out by focused ion beam (FIB). Measurement of the displacement fields around the FIB slit are performed by applying an advanced digital image correlation algorithm based on Fourier analysis with sub-pixel resolution. This method compares SEM images of the same area of the hardmetal surface before and after slitting. The method has been successfully applied to as-ground and femto-laser textured surfaces showing good correlation with the standard sin2 ψ XRD technique. It is concluded that texturing induced by laser pulses in the femtoseconds regime is not perfectly adiabatic, since residual stresses are reduced by 15

    Digital image correlation after focused ion beam micro-slit drilling: A new technique for measuring residual stresses in hardmetal components at local scale

    Get PDF
    A new method has been developed for measuring residual stresses at the surface of hardmetal components with higher spatial resolution than standard X-ray diffraction methods. It is based on measuring the surface dis-placements produced when stresses are partially released by machining a thin slit perpendicularly to the tested surface. Slit machining is carried out by focused ion beam (FIB). Measurement of the displacement fields around the FIB slit are performed by applying an advanced digital image correlation algorithm based on Fourier analysis with sub-pixel resolution. This method compares SEM images of the same area of the hardmetal surface before and after slitting. The method has been successfully applied to as-ground and femto-laser textured surfaces showing good correlation with the standard sin2 psi XRD technique. It is concluded that texturing induced by laser pulses in the femtoseconds regime is not perfectly adiabatic, since residual stresses are reduced by 15%

    Digital image correlation after focused ion beam micro-slit drilling: A new technique for measuring residual stresses in hardmetal components at local scale

    No full text
    A new method has been developed for measuring residual stresses at the surface of hardmetal components with higher spatial resolution than standard X-ray diffraction methods. It is based on measuring the surface dis-placements produced when stresses are partially released by machining a thin slit perpendicularly to the tested surface. Slit machining is carried out by focused ion beam (FIB). Measurement of the displacement fields around the FIB slit are performed by applying an advanced digital image correlation algorithm based on Fourier analysis with sub-pixel resolution. This method compares SEM images of the same area of the hardmetal surface before and after slitting. The method has been successfully applied to as-ground and femto-laser textured surfaces showing good correlation with the standard sin2 psi XRD technique. It is concluded that texturing induced by laser pulses in the femtoseconds regime is not perfectly adiabatic, since residual stresses are reduced by 15%
    corecore