47,404 research outputs found

    The solution of special squeeze film gas bearing problems by an improved numerical technique

    Get PDF
    Computer program for solving squeeze film gas bearing problem

    Quantum interference in dirty d-wave superconductors

    Full text link
    The local differential tunneling conductance on a Zn impurity in a disordered d-wave superconductors is studied. Quantum interference between many impurities leads to definitive quasiparticle spectra. We suggest that an elaborate analysis on impurity-induced spectra with quantum interference effect included may be able to pin down the sign and strength of the scattering potential of a Zn impurity in low density limit. Numerical simulations calculated with appropriately determined impurity parameters are in satisfactory agreement with the observations from scanning tunneling microscopy (STM) experiments even in subtle details

    In situ correction of liquid meniscus in cell culture imaging system based on parallel Fourier ptychographic microscopy (96 Eyes)

    Get PDF
    We collaborated with Amgen and spent five years in designing and fabricating next generation multi-well plate imagers based on Fourier ptychographic microscopy (FPM). A 6-well imager (Emsight) and a low-cost parallel microscopic system (96 Eyes) based on parallel FPM were reported in our previous work. However, the effect of liquid meniscus on the image quality is much stronger than anticipated, introducing obvious wavevector misalignment and additional image aberration. To this end, an adaptive wavevector correction (AWC-FPM) algorithm and a pupil recovery improvement strategy are presented to solve these challenges in situ. In addition, dual-channel fluorescence excitation is added to obtain structural information for microbiologists. Experiments are demonstrated to verify their performances. The accuracy of angular resolution with our algorithm is within 0.003 rad. Our algorithms would make the FPM algorithm more robust and practical and can be extended to other FPM-based applications to overcome similar challenges

    The induced representations of Brauer algebra and the Clebsch-Gordan coefficients of SO(n)

    Get PDF
    Induced representations of Brauer algebra Df(n)D_{f}(n) from Sf1×Sf2S_{f_{1}}\times S_{f_{2}} with f1+f2=ff_{1}+f_{2}=f are discussed. The induction coefficients (IDCs) or the outer-product reduction coefficients (ORCs) of Sf1×Sf2↑Df(n)S_{f_{1}}\times S_{f_{2}}\uparrow D_{f}(n) with f≤4f\leq 4 up to a normalization factor are derived by using the linear equation method. Weyl tableaus for the corresponding Gel'fand basis of SO(n) are defined. The assimilation method for obtaining CG coefficients of SO(n) in the Gel'fand basis for no modification rule involved couplings from IDCs of Brauer algebra are proposed. Some isoscalar factors of SO(n)⊃SO(n−1)SO(n)\supset SO(n-1) for the resulting irrep [λ1, λ2, λ3, λ4,0˙][\lambda_{1},~\lambda_{2},~ \lambda_{3},~\lambda_{4},\dot{0}] with $\sum\limits_{i=1}^{4}\lambda_{i}\leq .Comment: 48 pages latex, submitted to Journal of Phys.

    Upper-critical dimension in a quantum impurity model: Critical theory of the asymmetric pseudogap Kondo problem

    Full text link
    Impurity moments coupled to fermions with a pseudogap density of states display a quantum phase transition between a screened and a free moment phase upon variation of the Kondo coupling. We describe the universal theory of this transition for the experimentally relevant case of particle-hole asymmetry. The theory takes the form of a crossing between effective singlet and doublet levels, interacting with low-energy fermions. Depending on the pseudogap exponent, this interaction is either relevant or irrelevant under renormalization group transformations, establishing the existence of an upper-critical "dimension" in this impurity problem. Using perturbative renormalization group techniques we compute various critical properties and compare with numerical results.Comment: 4 pages, 2 figs, (v2) title changed, log corrections for r=1 adde

    Spherical squeeze-film hybrid bearing with small steady-state radial displacement

    Get PDF
    Spherical squeeze-film hybrid bearing with small steady-state radial displacement analysi

    Josephson Effect in Pb/I/NbSe2 Scanning Tunneling Microscope Junctions

    Full text link
    We have developed a method for the reproducible fabrication of superconducting scanning tunneling microscope (STM) tips. We use these tips to form superconductor/insulator/superconductor tunnel junctions with the STM tip as one of the electrodes. We show that such junctions exhibit fluctuation dominated Josephson effects, and describe how the Josephson product IcRn can be inferred from the junctions' tunneling characteristics in this regime. This is first demonstrated for tunneling into Pb films, and then applied in studies of single crystals of NbSe2. We find that in NbSe2, IcRn is lower than expected, which could be attributed to the interplay between superconductivity and the coexisting charge density wave in this material.Comment: 3 pages, 2 figures. Presented at the New3SC-4 meeting, San Diego, Jan. 16-21 200
    • …
    corecore