645 research outputs found

    Microtubule dynamics depart from wormlike chain model

    Get PDF
    Thermal shape fluctuations of grafted microtubules were studied using high resolution particle tracking of attached fluorescent beads. First mode relaxation times were extracted from the mean square displacement in the transverse coordinate. For microtubules shorter than 10 um, the relaxation times were found to follow an L^2 dependence instead of L^4 as expected from the standard wormlike chain model. This length dependence is shown to result from a complex length dependence of the bending stiffness which can be understood as a result of the molecular architecture of microtubules. For microtubules shorter than 5 um, high drag coefficients indicate contributions from internal friction to the fluctuation dynamics.Comment: 4 pages, 4 figures. Updated content, added reference, corrected typo

    Assessing Organizational Image through the College Open House: A Tool for Success

    Get PDF
    This study evaluates how effective colleges and universities are in presenting an accurate and positive organizational image via their open house events. The Open House Assessment for Higher Education Institutions (HEIs) © was developed to determine how institutional characteristics identified by potential members as influential to their decision to affiliate with a school were made relevant through the organizational image presented by the school. Open house events at twenty-four colleges and universities were assessed using the tool. Findings indicate that there are overall modifications to open house events that might benefit all schools, suggesting that the tool can be an effective self-assessment resource. Collective results and recommendations for improvement are discussed

    Synthesis of α-alkylidene cyclic carbonatesviaCO2fixation under ambient conditions promoted by an easily available silver carbamate

    Get PDF
    The simple and cost-effective compound [Ag(O2CNEt2)], in combination with PPh3, works as an effective catalytic precursor in the carboxylation of propargyl alcohols at ambient temperature and atmospheric CO2pressure, and in most cases under solventless conditions. The silver carbamate revealed a better performance than commercial silver oxide, Ag2O, and allowed to obtain a series of α-alkylidene cyclic carbonates in high yields

    Initial experience of dedicated breast PET imaging of ER+ breast cancers using [F-18]fluoroestradiol.

    Get PDF
    Dedicated breast positron emission tomography (dbPET) is an emerging technology with high sensitivity and spatial resolution that enables detection of sub-centimeter lesions and depiction of intratumoral heterogeneity. In this study, we report our initial experience with dbPET using [F-18]fluoroestradiol (FES) in assessing ER+ primary breast cancers. Six patients with >90% ER+ and HER2- breast cancers were imaged with dbPET and breast MRI. Two patients had ILC, three had IDC, and one had an unknown primary tumor. One ILC patient was treated with letrozole, and another patient with IDC was treated with neoadjuvant chemotherapy without endocrine treatment. In this small cohort, we observed FES uptake in ER+ primary breast tumors with specificity to ER demonstrated in a case with tamoxifen blockade. FES uptake in ILC had a diffused pattern compared to the distinct circumscribed pattern in IDC. In evaluating treatment response, the reduction of SUVmax was observed with residual disease in an ILC patient treated with letrozole, and an IDC patient treated with chemotherapy. Future study is critical to understand the change in FES SUVmax after endocrine therapy and to consider other tracer uptake metrics with SUVmax to describe ER-rich breast cancer. Limitations include variations of FES uptake in different ER+ breast cancer diseases and exclusion of posterior tissues and axillary regions. However, FES-dbPET has a high potential for clinical utility, especially in measuring response to neoadjuvant endocrine treatment. Further development to improve the field of view and studies with a larger cohort of ER+ breast cancer patients are warranted

    Total- and semi-bare noble metal nanoparticles@silica core@shell catalysts for hydrogen generation by formic acid decomposition

    Get PDF
    Catalysts are involved in a number of established and emerging chemical processes as well as in environmental remediation and energy conversion. Nanoparticles (NPs) can offer several advantages over some conventional catalysts, such as higher efficiency and selectivity. Nowadays, versatile and scalable nanocatalysts that combine activity and stability are still lacking. Here, we report a comprehensive investigation on the production and characterization of hybrid nano-architectures bringing a partial or total bare surface together with their catalytic efficiency evaluation on, as a proof-of-concept, the formic acid decomposition reaction. In this regard, formic acid (FA) is a convenient and safe hydrogen carrier with appealing features for mobile applications, fuel cells technologies, petrochemical processes and energetic applications. Thus, the design of robust catalysts for FA dehydrogenation is strongly demanded. Due to this, we produced and evaluated nano-architectures with various equilibrium between the size-increase of the active part and the barer catalytic surface. Overall, this work paves the way for the development of new approaches for green energy storage and safe delivery

    Isolation and culture of adult intestinal, gastric, and lver organoids for cre-recombinase-mediated gene deletion

    Get PDF
    The discovery of Lgr5 as a marker of adult stem cells meant that stem cell populations could be purified and studied in isolation. Importantly, when cultured under the appropriate conditions these stem cells form organoids in tissue culture that retain many features of the tissue of origin. The organoid cultures are accessible to genetic and biochemical manipulation, bridging the gap between in vivo mouse models and conventional tissue culture. Here we describe robust protocols to establish organoids from gastrointestinal tissues (stomach, intestine, liver) and Cre-recombinase mediated gene manipulation in vitro

    Nonlinear Competition Between Small and Large Hexagonal Patterns

    Full text link
    Recent experiments by Kudrolli, Pier and Gollub on surface waves, parametrically excited by two-frequency forcing, show a transition from a small hexagonal standing wave pattern to a triangular ``superlattice'' pattern. We show that generically the hexagons and the superlattice wave patterns bifurcate simultaneously from the flat surface state as the forcing amplitude is increased, and that the experimentally-observed transition can be described by considering a low-dimensional bifurcation problem. A number of predictions come out of this general analysis.Comment: 4 pages, RevTex, revised, to appear in Phys. Rev. Let

    Optical devices provide unprecedented insights into the laser cleaning of calcium oxalate layers

    Get PDF
    Abstract Calcium oxalates are insoluble colorless or whitish salts constituting noble patina, on both natural and artificial stone artworks' surfaces, the presence of which is extremely valued. The oxalates are not considered detrimental to the substrate, however, being often accompanied by other substances such as gypsum, silicates, and pigmented particles. They may form very adherent, relatively thick and colored layers creating disfiguring effects and hindering legibility of the pictorial surface. For this reason it may be appropriate to diminish their thickness, but patina's partial preservation is particularly required calling for extremely gradual and controllable cleaning approach. Thinning of calcium oxalate patina from a detached 16th century fresco (from Sansepolcro) was performed through the use of laser (Nd:YAG and Er:YAG) systems and chemical means (Carbogel loaded 5 wt.% of tetrasodium EDTA). Optical coherence tomography (OCT), providing a non-invasive stratigraphic cross-section of the examined surface, allowed to distinguish the oxalate from the underlying original layers and therefore to have an overview about its distribution, to numerically evaluate patina's thickness range and to provide the information on the amount of the material both removed and left on the artwork's surface. Laser scanning conoscopic microprofilometry allowed for a high-density sampling of the artwork's surface providing a three-dimensional model of the surface pattern. The obtained 3D models were used to estimate the amount of material removed and to compare them with those provided by OCT. The successful exploitation of the proposed exceptional cleaning monitoring methodology may be seen as an innovative and valid support for the restorers in the conservation of mural painting or other surfaces covered by oxalate layers and may pilot more targeted, cautious and respectful cleaning intervention

    Resonances and superlattice pattern stabilization in two-frequency forced Faraday waves

    Full text link
    We investigate the role weakly damped modes play in the selection of Faraday wave patterns forced with rationally-related frequency components m*omega and n*omega. We use symmetry considerations to argue for the special importance of the weakly damped modes oscillating with twice the frequency of the critical mode, and those oscillating primarily with the "difference frequency" |n-m|*omega and the "sum frequency" (n+m)*omega. We then perform a weakly nonlinear analysis using equations of Zhang and Vinals (1997, J. Fluid Mech. 336) which apply to small-amplitude waves on weakly inviscid, semi-infinite fluid layers. For weak damping and forcing and one-dimensional waves, we perform a perturbation expansion through fourth order which yields analytical expressions for onset parameters and the cubic bifurcation coefficient that determines wave amplitude as a function of forcing near onset. For stronger damping and forcing we numerically compute these same parameters, as well as the cubic cross-coupling coefficient for competing waves travelling at an angle theta relative to each other. The resonance effects predicted by symmetry are borne out in the perturbation results for one spatial dimension, and are supported by the numerical results in two dimensions. The difference frequency resonance plays a key role in stabilizing superlattice patterns of the SL-I type observed by Kudrolli, Pier and Gollub (1998, Physica D 123).Comment: 41 pages, 13 figures; corrected figure 1b and minor typos in tex
    • …
    corecore