19 research outputs found

    A diseasome cluster-based drug repurposing of soluble guanylate cyclase activators from smooth muscle relaxation to direct neuroprotection

    Get PDF
    Network medicine utilizes common genetic origins, markers and co-morbidities to uncover mechanistic links between diseases. These links can be summarized in the diseasome, a comprehensive network of disease–disease relationships and clusters. The diseasome has been influential during the past decade, although most of its links are not followed up experimentally. Here, we investigate a high prevalence unmet medical need cluster of disease phenotypes linked to cyclic GMP. Hitherto, the central cGMP-forming enzyme, soluble guanylate cyclase (sGC), has been targeted pharmacologically exclusively for smooth muscle modulation in cardiology and pulmonology. Here, we examine the disease associations of sGC in a non-hypothesis based manner in order to identify possibly previously unrecognized clinical indications. Surprisingly, we find that sGC, is closest linked to neurological disorders, an application that has so far not been explored clinically. Indeed, when investigating the neurological indication of this cluster with the highest unmet medical need, ischemic stroke, pre-clinically we find that sGC activity is virtually absent post-stroke. Conversely, a heme-free form of sGC, apo-sGC, was now the predominant isoform suggesting it may be a mechanism-based target in stroke. Indeed, this repurposing hypothesis could be validated experimentally in vivo as specific activators of apo-sGC were directly neuroprotective, reduced infarct size and increased survival. Thus, common mechanism clusters of the diseasome allow direct drug repurposing across previously unrelated disease phenotypes redefining them in a mechanism-based manner. Specifically, our example of repurposing apo-sGC activators for ischemic stroke should be urgently validated clinically as a possible first-in-class neuroprotective therapy

    The NOX toolbox: validating the role of NADPH oxidases in physiology and disease

    Get PDF
    Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis

    Vasoactivity of the gasotransmitters hydrogen sulfide and carbon monoxide in the chicken ductus arteriosus

    No full text
    van der Sterren S, Kleikers P, Zimmermann LJI, Villamor E. Vasoactivity of the gasotransmitters hydrogen sulfide and carbon monoxide in the chicken ductus arteriosus. Am J Physiol Regul Integr Comp Physiol 301: R1186-R1198, 2011. First published August 3, 2011; doi: 10.1152/ajpregu.00729.2010.-Besides nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H(2)S) is a third gaseous messenger that may play a role in controlling vascular tone and has been proposed to serve as an O(2) sensor. However, whether H(2)S is vasoactive in the ductus arteriosus (DA) has not yet been studied. We investigated, using wire myography, the mechanical responses induced by Na(2)S (1 mu M-1 mM), which forms H(2)S and HS(-) in solution, and by authentic CO (0.1 mu M-0.1 mM) in DA rings from 19-day chicken embryos. Na(2)S elicited a 100% relaxation (pD(2) 4.02) of 21% O(2)-contracted and a 50.3% relaxation of 62.5 mM KCl-contracted DA rings. Na(2)S-induced relaxation was not affected by presence of the NO synthase inhibitor L-NAME, the soluble guanylate cyclase (sGC) inhibitor ODQ, or the K(+) channel inhibitors tetraethylammonium (TEA; nonselective), 4-aminopyridine (4-AP, K(V)), glibenclamide (K(ATP)), iberiotoxin (BK(Ca)), TRAM-34 (IK(Ca)), and apamin (SK(Ca)). CO also relaxed O(2)-contracted (60.8% relaxation) and KCl-contracted (18.6% relaxation) DA rings. CO-induced relaxation was impaired by ODQ, TEA, and 4-AP (but not by L-NAME, glibenclamide, iberiotoxin, TRAM-34 or apamin), suggesting the involvement of sGC and K(V) channel stimulation. The presence of inhibitors of H(2)S or CO synthesis as well as the H(2)S precursor L-cysteine or the CO precursor hemin did not significantly affect the response of the DA to changes in O(2) tension. Endothelium-dependent and -independent relaxations were also unaffected. In conclusion, our results indicate that the gasotransmitters H(2)S and CO are vasoactive in the chicken DA but they do not suggest an important role for endogenous H(2)S or CO in the control of chicken ductal reactivity

    The 1027th target candidate in stroke: Will NADPH oxidase hold up?

    Get PDF
    As recently reviewed, 1026 neuroprotective drug candidates in stroke research have all failed on their road towards validation and clinical translation, reasons being quality issues in preclinical research and publication bias. Quality control guidelines for preclinical stroke studies have now been established. However, sufficient understanding of the underlying mechanisms of neuronal death after stroke that could be possibly translated into new therapies is lacking. One exception is the hypothesis that cellular death is mediated by oxidative stress. Oxidative stress is defined as an excess of reactive oxygen species (ROS) derived from different possible enzymatic sources. Among these, NADPH oxidases (NOX1-5) stand out as they represent the only known enzyme family that has no other function than to produce ROS. Based on data from different NOX knockout mouse models in ischemic stroke, the most relevant isoform appears to be NOX4. Here we discuss the state-of-the-art of this target with respect to stroke and open questions that need to be addressed on the path towards clinical translation

    Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement

    No full text
    Significance: Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. Recent Advances: Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. Critical Issues: Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. Future Directions: The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition. Antioxid. Redox Signal. 23, 406–427

    Un-biased housekeeping gene panel selection for high-validity gene expression analysis

    No full text
    Abstract Differential gene expression normalised to a single housekeeping (HK) is used to identify disease mechanisms and therapeutic targets. HK gene selection is often arbitrary, potentially introducing systematic error and discordant results. Here we examine these risks in a disease model of brain hypoxia. We first identified the eight most frequently used HK genes through a systematic review. However, we observe that in both ex-vivo and in vivo, their expression levels varied considerably between conditions. When applying these genes to normalise expression levels of the validated stroke target gene, inducible Nox4, we obtained opposing results. As an alternative tool for unbiased HK gene selection, software tools exist but are limited to individual datasets lacking genome-wide search capability and user-friendly interfaces. We, therefore, developed the HouseKeepR algorithm to rapidly analyse multiple gene expression datasets in a disease-specific manner and rank HK gene candidates according to stability in an unbiased manner. Using a panel of de novo top-ranked HK genes for brain hypoxia, but not single genes, Nox4 induction was consistently reproduced. Thus, differential gene expression analysis is best normalised against a HK gene panel selected in an unbiased manner. HouseKeepR is the first user-friendly, bias-free, and broadly applicable tool to automatically propose suitable HK genes in a tissue- and disease-dependent manner

    NOS knockout or inhibition but not disrupting PSD-95-NOS interaction protect against ischemic brain damage

    Get PDF
    Promising results have been reported in preclinical stroke target validation for pharmacological principles that disrupt the N-methyl-D-aspartate receptor-post-synaptic density protein-95-neuronal nitric oxide synthase complex. However, post-synaptic density protein-95 is also coupled to potentially neuroprotective mechanisms. As post-synaptic density protein-95 inhibitors may interfere with potentially neuroprotective mechanisms and sufficient validation has often been an issue in translating basic stroke research, we wanted to close that gap by comparing post-synaptic density protein-95 inhibitors with NOS1(-/-) mice and a NOS inhibitor. We confirm the deleterious role of NOS1 in stroke both invivo and invitro, but find three pharmacological post-synaptic density protein-95 inhibitors to be therapeutically ineffective

    Neuroprotection After Stroke by Targeting NOX4 As a Source of Oxidative Stress

    Get PDF
    Abstract Significance: Stroke, a leading cause of death and disability, poses a substantial burden for patients, relatives, and our healthcare systems. Only one drug is approved for treating stroke, and more than 30 contraindications exclude its use in 90% of all patients. Thus, new treatments are urgently needed. In this review, we discuss oxidative stress as a pathomechanism of poststroke neurodegeneration and the inhibition of its source, type 4 nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX4), as a conceptual breakthrough in stroke therapy. Recent Advances: Among potential sources of reactive oxygen species (ROS), the NOXes stand out as the only enzyme family that is solely dedicated to forming ROS. In rodents, three cerebrovascular NOXes exist: the superoxide-forming NOX1 and 2 and the hydrogen peroxide-forming NOX4. Studies using NOX1 knockout mice gave conflicting results, which overall do not point to a role for this isoform. Several reports find NOX2 to be relevant in stroke, albeit to variable and moderate degrees. In our hands, NOX4 is, by far, the major source of oxidative stress and neurodegeneration on ischemic stroke. Critical Issues: We critically discuss the tools that have been used to validate the roles of NOX in stroke. We also highlight the relevance of different animal models and the need for advanced quality control in preclinical stroke research. Future Directions: The development of isoform-specific NOX inhibitors presents a precious tool for further clarifying the role and drugability of NOX homologues. This could pave the avenue for the first clinically effective neuroprotectant applied poststroke, and even beyond this, stroke could provide a proof of principle for antioxidative stress therapy. Antioxid. Redox Signal. 00, 000-000
    corecore