967 research outputs found
Cancer systems biology: a network modeling perspective
Cancer is now appreciated as not only a highly heterogenous pathology with respect to cell type and tissue origin but also as a disease involving dysregulation of multiple pathways governing fundamental cell processes such as death, proliferation, differentiation and migration. Thus, the activities of molecular networks that execute metabolic or cytoskeletal processes, or regulate these by signal transduction, are altered in a complex manner by diverse genetic mutations in concert with the environmental context. A major challenge therefore is how to develop actionable understanding of this multivariate dysregulation, with respect both to how it arises from diverse genetic mutations and to how it may be ameliorated by prospective treatments. While high-throughput experimental platform technologies ranging from genomic sequencing to transcriptomic, proteomic and metabolomic profiling are now commonly used for molecular-level characterization of tumor cells and surrounding tissues, the resulting data sets defy straightforward intuitive interpretation with respect to potential therapeutic targets or the effects of perturbation. In this review article, we will discuss how significant advances can be obtained by applying computational modeling approaches to elucidate the pathways most critically involved in tumor formation and progression, impact of particular mutations on pathway operation, consequences of altered cell behavior in tissue environments and effects of molecular therapeutics
Recommended from our members
Predicting Empathy From Resting State Brain Connectivity: A Multivariate Approach.
Recent task fMRI studies suggest that individual differences in trait empathy and empathic concern are mediated by patterns of connectivity between self-other resonance and top-down control networks that are stable across task demands. An untested implication of this hypothesis is that these stable patterns of connectivity should be visible even in the absence of empathy tasks. Using machine learning, we demonstrate that patterns of resting state fMRI connectivity (i.e. the degree of synchronous BOLD activity across multiple cortical areas in the absence of explicit task demands) of resonance and control networks predict trait empathic concern (n = 58). Empathic concern was also predicted by connectivity patterns within the somatomotor network. These findings further support the role of resonance-control network interactions and of somatomotor function in our vicariously driven concern for others. Furthermore, a practical implication of these results is that it is possible to assess empathic predispositions in individuals without needing to perform conventional empathy assessments
Decoding the Encoding of Functional Brain Networks: an fMRI Classification Comparison of Non-negative Matrix Factorization (NMF), Independent Component Analysis (ICA), and Sparse Coding Algorithms
Brain networks in fMRI are typically identified using spatial independent
component analysis (ICA), yet mathematical constraints such as sparse coding
and positivity both provide alternate biologically-plausible frameworks for
generating brain networks. Non-negative Matrix Factorization (NMF) would
suppress negative BOLD signal by enforcing positivity. Spatial sparse coding
algorithms ( Regularized Learning and K-SVD) would impose local
specialization and a discouragement of multitasking, where the total observed
activity in a single voxel originates from a restricted number of possible
brain networks.
The assumptions of independence, positivity, and sparsity to encode
task-related brain networks are compared; the resulting brain networks for
different constraints are used as basis functions to encode the observed
functional activity at a given time point. These encodings are decoded using
machine learning to compare both the algorithms and their assumptions, using
the time series weights to predict whether a subject is viewing a video,
listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects.
For classifying cognitive activity, the sparse coding algorithm of
Regularized Learning consistently outperformed 4 variations of ICA across
different numbers of networks and noise levels (p0.001). The NMF algorithms,
which suppressed negative BOLD signal, had the poorest accuracy. Within each
algorithm, encodings using sparser spatial networks (containing more
zero-valued voxels) had higher classification accuracy (p0.001). The success
of sparse coding algorithms may suggest that algorithms which enforce sparse
coding, discourage multitasking, and promote local specialization may capture
better the underlying source processes than those which allow inexhaustible
local processes such as ICA
Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating
AbstractSeizure activity in EEG recordings can persist for hours with seizure dynamics changing rapidly over time and space. To characterise the spatiotemporal evolution of seizure activity, large data sets often need to be analysed. Dynamic causal modelling (DCM) can be used to estimate the synaptic drivers of cortical dynamics during a seizure; however, the requisite (Bayesian) inversion procedure is computationally expensive. In this note, we describe a straightforward procedure, within the DCM framework, that provides efficient inversion of seizure activity measured with non-invasive and invasive physiological recordings; namely, EEG/ECoG. We describe the theoretical background behind a Bayesian belief updating scheme for DCM. The scheme is tested on simulated and empirical seizure activity (recorded both invasively and non-invasively) and compared with standard Bayesian inversion. We show that the Bayesian belief updating scheme provides similar estimates of time-varying synaptic parameters, compared to standard schemes, indicating no significant qualitative change in accuracy. The difference in variance explained was small (less than 5%). The updating method was substantially more efficient, taking approximately 5–10min compared to approximately 1–2h. Moreover, the setup of the model under the updating scheme allows for a clear specification of how neuronal variables fluctuate over separable timescales. This method now allows us to investigate the effect of fast (neuronal) activity on slow fluctuations in (synaptic) parameters, paving a way forward to understand how seizure activity is generated
Introduction—23rd North American Prairie Conference
Building upon the tradition started in Illinois by Peter Schramm in 1970, with the first conference on prairies and prairie restoration, the North American Prairie Conference (NAPC) has developed a tradition of excellence in native prairie research, conservation, education and restoration of one of the worlds’ most productive, yet most endangered, ecosystems. It has spawned great interest, enthusiasm and efforts to better understand, appreciate, manage and conserve this vital part of North America’s natural and cultural history.
In early August 2012, the University of Manitoba in Winnipeg hosted the 23rd NAPC. The theme of the 2012 conference was “Celebrating Our Prairie Heritage.” It explored where we have been and where we should be heading. Over 230 people from 12 U.S. states and 5 Canadian provinces helped celebrate in outstanding style. This was only the second time this major international conference had been hosted in Canada. Manitoba is Canada’s easternmost prairie province, and traditionally has been the gateway to the vast Canadian prairies further west. Historically, aboriginal peoples and European settlers alike marveled at the open country revealed by lush shoulder-high grasses and wildflowers of the Red River Valley. The tall-grass prairie gradually gave way to the mixed grass and rough fescue prairies that stretched from western Manitoba right through to the Rockies
Effects of chronic sleep restriction on the brain functional network, as revealed by graph theory
Sleep is a complex and dynamic process for maintaining homeostasis, and a lack of sleep can disrupt whole-body functioning. No organ is as vulnerable to the loss of sleep as the brain. Accordingly, we examined a set of task-based functional magnetic resonance imaging (fMRI) data by using graph theory to assess brain topological changes in subjects in a state of chronic sleep restriction, and then identified diurnal variability in the graph-theoretic measures. Task-based fMRI data were collected in a 1.5T MR scanner from the same participants on two days: after a week of fully restorative sleep and after a week with 35% sleep curtailment. Each day included four scanning sessions throughout the day (at approximately 10:00 AM, 2:00 PM, 6:00 PM, and 10:00 PM). A modified spatial cueing task was applied to evaluate sustained attention. After sleep restriction, the characteristic path length significantly increased at all measurement times, and small-worldness significantly decreased. Assortativity, a measure of network fault tolerance, diminished over the course of the day in both conditions. Local graph measures were altered primarily across the limbic system (particularly in the hippocampus, parahippocampal gyrus, and amygdala), default mode network, and visual network
- …