575 research outputs found
Obliteration of radical cavities with autogenous cortical bone; long-term results
<p>Abstract</p> <p>Background</p> <p>To evaluate the long-term surgical outcome(s) in patients who have undergone canal-wall-down operation with mastoid and epitympanic obliteration using autologous cortical bone chips, bone pate and meatally-based musculoperiosteal flap technique.</p> <p>Method</p> <p>Retrospective evaluation of seventy patients operated during 1986–1991 due to a cholesteatoma. An otomicroscopy was performed to evaluate the postoperative outer ear canal configuration with a modified Likert scale (1 – 4). The outer ear canal physical volume was assessed by tympanometry. The hearing outcome and a patient-filled questionnaire were also analyzed.</p> <p>Results</p> <p>The posterior wall results were 1.8 (± 0.9 SD) and the attic region 1.8 (± 0.9 SD) (ns., p > 0.05). These values show either no cavity formation or minor formation of a cavity, with a good functional result. The mean volume of the operated ear canal was 1.7 (± 0.5 SD) ml. The volume of the contralateral ear canal was 1.2 (± 0.3 SD) ml (*** p < 0.0001). A comparison of the current mean ABG to the preoperative mean ABG and to the ABG at one-year postoperatively, 5-years postoperatively or 10-years postoperatively showed no statistical significance (p > 0.05).</p> <p>Conclusion</p> <p>ABG does not significantly change in the long-term. The configuration of the cavity tends to change, however, the obliteration material is stable in the long-term and clinically significant cavitation rarely occurs.</p
Representation of Time-Varying Stimuli by a Network Exhibiting Oscillations on a Faster Time Scale
Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp.
Author Summary
Sensory processing of time-varying stimuli, such as speech, is associated with high-frequency oscillatory cortical activity, the functional significance of which is still unknown. One possibility is that the oscillations are part of a stimulus-encoding mechanism. Here, we investigate a computational model of such a mechanism, a spiking neuronal network whose intrinsic oscillations interact with external input (waveforms simulating short speech segments in a single acoustic frequency band) to encode stimuli that extend over a time interval longer than the oscillation's period. The network implements a temporally sparse encoding, whose robustness to time warping and neuronal noise we quantify. To our knowledge, this study is the first to demonstrate that a biophysically plausible model of oscillations occurring in the processing of auditory input may generate a representation of signals that span multiple oscillation cycles.National Science Foundation (DMS-0211505); Burroughs Wellcome Fund; U.S. Air Force Office of Scientific Researc
Cross-Frequency Integration for Consonant and Vowel Identification in Bimodal Hearing
Purpose: Improved speech recognition in binaurally combined acoustic–electric stimulation (otherwise known as bimodal hearing) could arise when listeners integrate speech cues from the acoustic and electric hearing. The aims of this study were (a) to identify speech cues extracted in electric hearing and residual acoustic hearing in the low-frequency region and (b) to investigate cochlear implant (CI) users' ability to integrate speech cues across frequencies.
Method: Normal-hearing (NH) and CI subjects participated in consonant and vowel identification tasks. Each subject was tested in 3 listening conditions: CI alone (vocoder speech for NH), hearing aid (HA) alone (low-pass filtered speech for NH), and both. Integration ability for each subject was evaluated using a model of optimal integration—the PreLabeling integration model (Braida, 1991).
Results: Only a few CI listeners demonstrated bimodal benefit for phoneme identification in quiet. Speech cues extracted from the CI and the HA were highly redundant for consonants but were complementary for vowels. CI listeners also exhibited reduced integration ability for both consonant and vowel identification compared with their NH counterparts.
Conclusion: These findings suggest that reduced bimodal benefits in CI listeners are due to insufficient complementary speech cues across ears, a decrease in integration ability, or both.National Organization for Hearing ResearchNational Institute on Deafness and Other Communication Disorders (U.S.) (Grant R03 DC009684-01)National Institute on Deafness and Other Communication Disorders (U.S.) (Grant R01 DC007152-02
Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1
Peer reviewedPublisher PD
Visual Working Memory Load-Related Changes in Neural Activity and Functional Connectivity
BACKGROUND: Visual working memory (VWM) helps us store visual information to prepare for subsequent behavior. The neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for hemi-field VWM retention. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we recorded electroencephalography (EEG) from 14 normal young adults while they performed a bilateral visual field memory task. Subjects had more rapid and accurate responses to the left visual field (LVF) memory condition. The difference in mean amplitude between the ipsilateral and contralateral event-related potential (ERP) at parietal-occipital electrodes in retention interval period was obtained with six different memory loads. Functional connectivity between 128 scalp regions was measured by EEG phase synchronization in the theta- (4-8 Hz), alpha- (8-12 Hz), beta- (12-32 Hz), and gamma- (32-40 Hz) frequency bands. The resulting matrices were converted to graphs, and mean degree, clustering coefficient and shortest path length was computed as a function of memory load. The results showed that brain networks of theta-, alpha-, beta-, and gamma- frequency bands were load-dependent and visual-field dependent. The networks of theta- and alpha- bands phase synchrony were most predominant in retention period for right visual field (RVF) WM than for LVF WM. Furthermore, only for RVF memory condition, brain network density of theta-band during the retention interval were linked to the delay of behavior reaction time, and the topological property of alpha-band network was negative correlation with behavior accuracy. CONCLUSIONS/SIGNIFICANCE: We suggest that the differences in theta- and alpha- bands between LVF and RVF conditions in functional connectivity and topological properties during retention period may result in the decline of behavioral performance in RVF task
Gamma Power Is Phase-Locked to Posterior Alpha Activity
Neuronal oscillations in various frequency bands have been reported in numerous studies in both humans and animals. While it is obvious that these oscillations play an important role in cognitive processing, it remains unclear how oscillations in various frequency bands interact. In this study we have investigated phase to power locking in MEG activity of healthy human subjects at rest with their eyes closed. To examine cross-frequency coupling, we have computed coherence between the time course of the power in a given frequency band and the signal itself within every channel. The time-course of the power was calculated using a sliding tapered time window followed by a Fourier transform. Our findings show that high-frequency gamma power (30–70 Hz) is phase-locked to alpha oscillations (8–13 Hz) in the ongoing MEG signals. The topography of the coupling was similar to the topography of the alpha power and was strongest over occipital areas. Interestingly, gamma activity per se was not evident in the power spectra and only became detectable when studied in relation to the alpha phase. Intracranial data from an epileptic subject confirmed these findings albeit there was slowing in both the alpha and gamma band. A tentative explanation for this phenomenon is that the visual system is inhibited during most of the alpha cycle whereas a burst of gamma activity at a specific alpha phase (e.g. at troughs) reflects a window of excitability
Critical synchronization dynamics of the Kuramoto model on connectome and small world graphs
The hypothesis, that cortical dynamics operates near criticality also
suggests, that it exhibits universal critical exponents which marks the
Kuramoto equation, a fundamental model for synchronization, as a prime
candidate for an underlying universal model. Here, we determined the
synchronization behavior of this model by solving it numerically on a large,
weighted human connectome network, containing 804092 nodes, in an assumed
homeostatic state. Since this graph has a topological dimension , a real
synchronization phase transition is not possible in the thermodynamic limit,
still we could locate a transition between partially synchronized and
desynchronized states. At this crossover point we observe power-law--tailed
synchronization durations, with , away from experimental
values for the brain. For comparison, on a large two-dimensional lattice,
having additional random, long-range links, we obtain a mean-field value:
. However, below the transition of the connectome we
found global coupling control-parameter dependent exponents ,
overlapping with the range of human brain experiments. We also studied the
effects of random flipping of a small portion of link weights, mimicking a
network with inhibitory interactions, and found similar results. The
control-parameter dependent exponent suggests extended dynamical criticality
below the transition point.Comment: 12 pages, 9 figures + Supplemenraty material pdf 2 pages 4 figs, 1
table, accepted version in Scientific Report
Transfer entropy—a model-free measure of effective connectivity for the neurosciences
Understanding causal relationships, or effective connectivity, between parts of the brain is of utmost importance because a large part of the brain’s activity is thought to be internally generated and, hence, quantifying stimulus response relationships alone does not fully describe brain dynamics. Past efforts to determine effective connectivity mostly relied on model based approaches such as Granger causality or dynamic causal modeling. Transfer entropy (TE) is an alternative measure of effective connectivity based on information theory. TE does not require a model of the interaction and is inherently non-linear. We investigated the applicability of TE as a metric in a test for effective connectivity to electrophysiological data based on simulations and magnetoencephalography (MEG) recordings in a simple motor task. In particular, we demonstrate that TE improved the detectability of effective connectivity for non-linear interactions, and for sensor level MEG signals where linear methods are hampered by signal-cross-talk due to volume conduction
Covert Waking Brain Activity Reveals Instantaneous Sleep Depth
The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this continuum is the alpha oscillation, an 8–13 Hz electroencephalographic rhythm prominent over posterior scalp locations. The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins. Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous responsiveness to noise—a measure of sleep depth—throughout a night of sleep. By systematically challenging sleep with realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep
- …