31 research outputs found

    Global perspectives on observing ocean boundary current systems

    Get PDF
    Ocean boundary current systems are key components of the climate system, are hometo highly productive ecosystems, and have numerous societal impacts. Establishmentof a global network of boundary current observing systems is a critical part of ongoingdevelopment of the Global Ocean Observing System. The characteristics of boundarycurrent systems are reviewed, focusing on scientific and societal motivations forsustained observing. Techniques currently used to observe boundary current systemsare reviewed, followed by a census of the current state of boundary current observingsystems globally. The next steps in the development of boundary current observingsystems are considered, leading to several specific recommendations

    Oceanography: Nutrients in remote mode

    No full text

    Nutrients in remote mode

    No full text

    Gulf Stream Rings as a Source of Iron to the North Atlantic Subtropical Gyre

    Get PDF
    Substantial amounts of nitrogen fixation occur in the North Atlantic subtropical gyre, due to the activity of cyanobacteria with high iron requirements. Iron is delivered to this region by dust from the Sahara Desert. However, this dust deposition is typically localized and episodic. Therefore, other sources of iron may also be important. Here, we report observations of dissolved iron concentrations in a Gulf Stream cold-core ring, which transported iron-rich water from near the continental slope into the subtropical gyre. We find that iron concentrations were elevated in the ring compared with subtropical waters, reflecting its source waters. Using iron data from these source waters and the identification of ring activity in satellite data, we estimate that cold-core rings provide a net flux of 0.3 ± 0.17 × 108 mol Fe yr−1 across the northwestern gyre edge, on the order of 15% of our median estimates of gyre-wide supply of iron by dust deposition. We suggest that iron supply from cold-core rings is an important source of iron to the northwestern gyre edge. We conclude that mesoscale ocean circulation features may play an important role in subtropical nutrient and carbon cycling

    Quantification of Dissolved Iron Sources to the North Atlantic Ocean

    No full text
    Dissolved iron is an essential micronutrient for marine phytoplankton, and its availability controls patterns of primary productivity and carbon cycling throughout the oceans1,2. The relative importance of different sources of iron to the oceans is not well known, however, and flux estimates from atmospheric dust, hydrothermal vents and oceanic sediments vary by orders of magnitude. Here we present a high-resolution transect of dissolved stable iron isotope ratios (ή56Fe) and iron concentrations ([Fe]) along a section of the North Atlantic Ocean. The different iron sources can be identified by their unique ή56Fe signatures, which persist throughout the water column. This allows us to calculate the relative contribution from dust, hydrothermal venting and reductive and non-reductive sedimentary release to the dissolved phase. We find that Saharan dust aerosol is the dominant source of dissolved iron along the section, contributing 71–87 per cent of dissolved iron. Additional sources of iron are non-reductive release from oxygenated sediments on the North American margin (10–19 per cent), reductive sedimentary dissolution on the African margin (1–4 per cent) and hydrothermal venting at the Mid-Atlantic Ridge (2–6 per cent). Our data also indicate that hydrothermal vents in the North Atlantic are a source of isotopically light iron, which travels thousands of kilometres from vent sites, potentially influencing surface productivity. Changes in the relative importance of the different iron sources through time may affect interactions between the carbon cycle and climate
    corecore