450 research outputs found

    A survey on Routing Protocols in Wireless Sensor Networks

    Full text link
    In ad-hoc WSN is a collection of mobile nodes that are dynamically and randomly located in such a manner that the interconnections between nodes are changing on a continual basis. The dynamic nature of these networks demands new set of network routing strategy protocols to be implemented in order to provide efficient end-to end communication. Moreover, such issues are very critical due to severe resource constraints like efficient energy utilization, lifetime of network, and drastic environmental conditions in WSNs. Neither hop-by-hop nor neither direct reach ability is possible in case of WSNs. In order to facilitate communication within the network, a routing protocol is used. In this paper we have carried out an extensive survey on WSN protocols based on structure of network, routing protocol of network & clustering techniques of routing protocols

    Executive summary of AAPM Report Task Group 113: Guidance for the physics aspects of clinical trials

    Full text link
    The charge of AAPM Task Group 113 is to provide guidance for the physics aspects of clinical trials to minimize variability in planning and dose delivery for external beam trials involving photons and electrons. Several studies have demonstrated the importance of protocol compliance on patient outcome. Minimizing variability for treatments at different centers improves the quality and efficiency of clinical trials. Attention is focused on areas where variability can be minimized through standardization of protocols and processes through all aspects of clinical trials. Recommendations are presented for clinical trial designers, physicists supporting clinical trials at their individual clinics, quality assurance centers, and manufacturers.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146453/1/acm212384_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146453/2/acm212384.pd

    Depression and Oxidative Stress: Results From a Meta-Analysis of Observational Studies

    Get PDF
    To perform a systematic review and meta-analysis that quantitatively tests and summarizes the hypothesis that depression results in elevated oxidative stress and lower antioxidant levels

    IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119.

    Get PDF
    AAPM Task Group 119 has produced quantitative confidence limits as baseline expectation values for IMRT commissioning. A set of test cases was developed to assess the overall accuracy of planning and delivery of IMRT treatments. Each test uses contours of targets and avoidance structures drawn within rectangular phantoms. These tests were planned, delivered, measured, and analyzed by nine facilities using a variety of IMRT planning and delivery systems. Each facility had passed the Radiological Physics Center credentialing tests for IMRT. The agreement between the planned and measured doses was determined using ion chamber dosimetry in high and low dose regions, film dosimetry on coronal planes in the phantom with all fields delivered, and planar dosimetry for each field measured perpendicular to the central axis. The planar dose distributions were assessed using gamma criteria of 3%/3 mm. The mean values and standard deviations were used to develop confidence limits for the test results using the concept confidence limit = /mean/ + 1.96sigma. Other facilities can use the test protocol and results as a basis for comparison to this group. Locally derived confidence limits that substantially exceed these baseline values may indicate the need for improved IMRT commissioning

    Validation of the severity index by cardiac catheterization and Doppler echocardiography in patients with aortic sclerosis and stenosis

    Get PDF
    The severity index is a new echocardiographic measure that is thought to be an accurate indicator of aortic leaflet pathology in patients with AS. However, it has not been validated against cardiac catheterization or Doppler echocardiographic measures of AS severity nor has it been applied to patients with aortic sclerosis. The purposes of this study were to compare the severity index to invasive hemodynamics and Doppler echocardiography across the spectrum of calcific aortic valve disease, including aortic sclerosis and AS. 48 patients with aortic sclerosis and AS undergoing echocardiography and cardiac catheterization comprised the study population. The aortic valve leaflets were assessed for mobility (scale 1 to 6) and calcification (scale 1 to 4) and the severity index was calculated as the sum of the mobility and calcification scores according to the methods of Bahler et al. The severity index increased with increasing severity of aortic valve disease; the severity indices for patients with aortic sclerosis, mild to moderate AS and severe AS were 3.38 ± 1.06, 6.45 ± 2.16 and 8.38 ± 1.41, respectively. The aortic jet velocity by echocardiography and the square root of the maximum aortic valve gradient by cardiac catheterization correlated well with the severity index (r = 0.84, p < 0.0001; r = 0.84, p < 0.0001, respectively). These results confirm that the severity index correlates with hemodynamic severity of aortic valve disease and may prove to be a useful measure in patients with aortic sclerosis and AS

    Crop Updates 2000 - Pulses

    Get PDF
    This session covers fifty nine papers from different authors: 1.1999 PULSE INDUSTRY HIGHLIGHTS 2. CONTRIBUTORS 3. BACKGROUND 4. SUMMARY OF PREVIOUS RESULTS 5. 1999 REGIONAL ROUNDUP 6. Northern Agricultural Region, W. O’Neill, AGWEST 7. Central Agricultural Region J. Russell and R.J. French AGWEST 8. Great Southern and Lakes N. Brandon, C. Gaskin and N. Runciman, AGWEST 9. Esperance Mallee M. Seymour, AGWEST PULSE PRODUCTION AGRONOMY AND GENETIC IMPROVEMENT 10. Faba Bean 11. Desi chickpea Traits associated with drought resistance in chickpea, J. Berger, N.C. Turner, CLIMA and CSIRO Plant Industry, R.J. French, AGWEST, R. Carpenter, C. Ludwig and R. Kenney, CSIRO Plant Industry 12. Genotype x environment analysis of chickpea adaptation, J. Berger and N. Turner, CLIMA and CSIRO Plant Industry, and K.H.M. Siddique, AGWEST 13. Carbon fixation by chickpea pods under terminal drought, Q. Ma, CLIMA, M.H. Behboudian, Massey University, New Zealand, N.C. Turner and J.A. Palta, CLIMA, and CSIRO Plant Industry 14. Influence of terminal drought on growth and seed quality, M.H. Behboudian, Massey University, New Zealand, Q. Ma, CLIMA, N.C. Turner and J.A. Palta, CSIRO Plant Industry 15. Resistance to chilling at flowering and to budworm, H. Clarke, CLIMA Chickpea nodulation survey, J. Stott and J. Howieson, Centre for Rhizobium Studies, Murdoch University 16. Kabuli chickpea 17. Premium quality kabuli chickpea development in the ORIA, K.H.M. Siddique CLIMA and AGWEST, K.L. Regan, AGWEST, R. Shackles, AGWEST 18. International screening for Ascochyta blight resistance, K.H.M. Siddique CLIMA and AGWEST, C. Francis, CLIMA, K.L. Regan, AGWEST, N. Acikgoz and N. Atikyilmaz, AARI, Turkey and R.S. Malholtra, ICARDA, Syria 19. Agronomic evaluation of Ascochyta resistant kabuli germplasm in WA, K.H.M. Siddique CLIMA and AGWESTC. Francis, CLIMA, K.L. Regan and M. Baker, AGWEST 20. Field Pea 21. Lentil 22. ACIAR project J. Clements, K.H.M. Siddique CLIMA and AGWEST and C. Francis CLIMA 23. Vetch 24. Rust, M. Seymour, AGWEST 25. Narbon bean 26. Agronomy, M. Seymour, AGWEST 27. Lupinus species 28. Screening lupins for tolerance to alkaline/calcareous soils, C. Tang, CLIMA andUniversity of WAand J.D. Brand, WAITE, University of Adelaide 29. Lathyrus development, C. Hanbury and K.H.M. Siddique, CLIMA and AGWEST 30. Sheep feeding studies, C. White, CSIRO, Perth, C. Hanbury, CLIMA and K.H.M. Siddique, CLIMA and AGWEST 31. Lathyrus: a potential new ingredient in pig diets, B.P. Mullan, C.D. Hanbury and K.H.M. Siddique, AGWEST 32. Species comparison 33. Species for horticultural rotations, K.H.M. Siddique, AGWEST, R. Lancaster and I. Guthridge AGWEST 34. Marrow fat field pea shows promise in the southwest, K.H.M. Siddique, AGWEST, N. Runciman, AGWEST, and I. Pritchard, AGWEST, 35. Pulses on grey clay soils, P. Fisher, M. Braimbridge, J. Bignell, N. Brandon, R. Beermier, W. Bowden, AGWEST 36. Nutrient management of pulses 37. Summary of pulse nutrition studies in WA, M.D.A. Bolland, K.H.M. Siddique, G.P. Riethmuller, and R.F. Brennan, AGWEST 38. Pulse species response to phosphorus and zinc, S. Lawrence, Zed Rengel, University of WA, S.P. Loss, CSBP futurefarm, M.D.A. Bolland, .H.M. Siddique, W. Bowden, AGWEST 39. Gypsum 40. Antitranspirants seed priming DEMONSTRATION OF PULSES IN THE FARMING SYSTEM 41. Foliar and soil applied nutrients for field peas in the south coast mallee,M. Seymour, AGWEST, and P. Vedeniapine, Phosyn Ltd 42. Demonstration of pulse species at Kendenup, C. Kirkwood, Farmer, Katanning, R. Beermier, N. Runciman and N. Brandon, AGWEST 43. Kabuli chickpea demonstration at Gnowangerup, R. Beermier and N. Brandon, AGWEST 44. Lathyrus sativus demonstration at Mindarabin, N. Brandon and R. Beermier, AGWEST 45. New field pea varieties in the central eastern region, J. Russell, AGWEST DISEASE AND PEST MANAGEMENT 46. Ascochyta blight of chickpea 47. Botrytis grey mould (BGM) of chickpea 48. Fungal disease diagnostics, Pulse disease diagnostics, D. Wright, AGWEST Plant Laboratories 49. Viruses in pulses, Luteovirus infection in field pea and faba bean crops, and viruses in seed, L. Latham, CLIMA and AGWEST, R. Jones, AGWEST 50. Screening of pulse species for pea seed-borne mosaic virus, L. Latham, CLIMAand AGWEST, and R. Jones, AGWEST 51. CMV in chickpea: effect of seed-borne sources on virus spread and seed yield, R. Jones, AGWEST and L. Latham, CLIMA and AGWEST 52. Insect pests 53. Evaluation of transgenic field pea against the pea weevil,M.J. de Sousa Majer, School of Environmental Biology, Curtin University of Technology,, D. Hardie, and N.C. Turner, CSIRO Division of Plant Industry 54. Development of a molecular marker for pea weevil resistance in field pea, Oonagh Byrne, CLIMA, Darryl Hardie, AGWEST and Penny Smith, UWA 55. Aphid feeding damage to faba bean and lentil crops, Françoise Berlandier, AGWEST 56. Taxonomy and control of bruchids in pulses, N. Keals, CLIMA, D. Hardie and R. Emery, AGWEST, 57. ACKNOWLEDGMENTS 58. PUBLICATIONS BY PULSE PRODUCTIVITY PROJECT STAFF 59. VARIETIES PRODUCED AND COMMERCIALLY RELEASE

    Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland

    Get PDF
    Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red clover (Trifolium pratense L.) and lucerne (Medicago sativa L.) were leaf-labelled with 15N enriched urea during one growing season. N transfer to grasses (Lolium perenne L. and xfestulolium), white clover, red clover, lucerne, birdsfoot trefoil (Lotus corniculatus L.), chicory (Cichorium intybus L.), plantain (Plantago lanceolata L.), salad burnet (Sanguisorba minor L.)and caraway (Carum carvi L.) was assessed. Neighbouring plants contained greater amounts of N derived from white clover (4.8 gm-2) compared with red clover (2.2 gm-2) and lucerne (1.1 gm-2). Grasses having fibrous roots received greater amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40 kg N ha-1 to neighbouring plants. Below-ground N transfer from legumes to neighbouring plants differed among nitrogen donors and nitrogen receivers and may depend on root characteristics and regrowth strategies of plant species in the multi-species grassland

    Crop Updates 2002 - Pulse Research and Industry Development in Western Australia

    Get PDF
    This session covers seventy one papers from different authors: 1. 2001 PULSE INDUSTRY HIGHLIGHTS CONTRIBUTORS BACKGROUND 2001 REGIONAL ROUNDUP 2. Northern Agricultural Region, M. Harries, Department of Agriculture 3. Central Agricultural Region, R. French and I. Pritchard, Department of Agriculture 4. Great Southern and Lakes, N. Brandon, N. Runciman and S. White, Department of Agriculture 5. Esperance Mallee, M. Seymour, Department of Agriculture PULSE PRODUCTION AGRONOMY AND GENETIC IMPROVEMENT 6. Faba bean, P. White, Department of Agriculture 7. Germplasm evaluation, P. White, M. Seymour and M. Harries, Department of Agriculture 8. Variety evaluation, P. White, M. Harries, N. Brandon and M. Seymour, Department of Agriculture 9. Sowing rate and time of sowing, P. White, N. Brandon, M. Seymour and M. Harries, Department of Agriculture 10.Use of granular inoculum in the Great Southern, N. Brandon1, J. Howieson2 and R. Yates2 1Department of Agriculture, 2Centre for Rhizobium Studies, Murdoch University 11.Tolerance to post emergent herbicides, M. Seymour and M. Harries, Department of Agriculture 12.Herbicide tolerance of new varieties, H. Dhammu and T. Piper, Department of Agriculture Desi chickpea 13. Breeding highlights, T. Khan, Department of Agriculture 14. Variety evaluation, T. Khan and K. Regan, Department of Agriculture 15. Effect of genotype and environment on seed quality, N. Suizu1 and D. Diepeveen2 1School of Public Health, Curtin University of Technology 2Department of Agriculture 16. Seed discolouration, C. Veitch and P. White, Department of Agriculture 17. Foliar application on N increases seed yield and seed protein under terminal drought, J. Palta1,2, A. Nandwal3 and N. Turner1,2 , 1CSIRO Plant Industry, 2CLIMA, the University of Western Australia, 3Department of Botany, Haryana Agric University, Hisar, India 18. Tolerance to chilling at flowering, H. Clarke, CLIMA, The University of Western Australia 19. Molecular studies of ascochyta blight disease in chickpea, G. Dwyer1, H. Loo1, T. Khan2, K. Siddique3, M. Bellgard1 and M. Jones1 ,1WA State Agricultural Biotechnology Centre and Centre for Bioinformatics and Biological Computing, Murdoch University, 2Department of Agriculture, 3CLIMA, The University of Western Australia 20. Effect of row spacing and sowing rate on seed yield, G. Riethmuller and B. MacLeod, Department of Agriculture 21. Herbicide tolerance on marginal soil types, H. Dhammu and T. Piper, Department of Agriculture 22. Kabuli chickpea, K. Regan, Department of Agriculture 23. Variety and germplasm evaluation, T. Khan and K. Regan, Department of Agriculture 24. Premium quality kabuli chickpea development in the ORIA, K. Siddique1, K. Regan2, R. Shackles2 and P. Smith2 , 1 CLIMA, The University of Western Australia, 2Department of Agriculture 25. Evaluation of ascochylta resistant germplasm from Syria and Turkey, K. Siddique1, C. Francis1 and K. Regan2, 1CLIMA, University of Western Australia 2Department of Agriculture Field pea 26. Breeding highlights, T. Khan Department of Agriculture 27. Variety evaluation, T. Khan Department of Agriculture 28. Comparing the phosphorus requirement of field pea and wheat, M. Bolland and P. White, Department of Agriculture 29. Tolerance of field pea to post emergent herbicides, M. Seymour and N. Brandon, Department of Agriculture 30. Response of new varieties to herbicides, H. Dhammu and T. Piper, Department of Agriculture 31. Lentil, K. Regan, Department of Agriculture 32. Variety evaluation, K. Regan, N. Brandon, M. Harries and M. Seymour, Department of Agriculture 33. Interstate evaluation of advanced breeding lines developed in WA, K. Regan1, K. Siddique2 and M. Materne3, 1Department of Agriculture, 2CLIMA, University of Western Australia, 3Victorian Institute for Dryland Agriculture, Agriculture Victoria 34. Evaluation of germplasm from overseas and local projects, K. Regan1, J. Clements2, K.H.M. Siddique2 and C. Francis21Department of Agriculture, 2CLIMA, University of Western Australia 35. Evaluation of breeding lines developed in WA, K. Regan1, J. Clements2, K.H.M. Siddique2 and C. Francis21Department of Agriculture, 2CLIMA, University of Western Australia 36. Productivity and yield stability in Australia and Nepal, C. Hanbury, K. Siddique and C. Francis, CLIMA, the University of Western Australia Vetch 37. Germplasm evaluation, M. Seymour1, R. Matic2 and M. Tate3, 1Department of Agriculture, 2South Australian Research and Development Institute, 3University of Adelaide, Waite Campus 38. Tolerance of common vetch to post emergent herbicides, M. Seymour and N. Brandon, Department of Agriculture Narbon bean 39. Removing narbon bean from wheat, M. Seymour, Department of Agriculture 40. Tolerance to low rates of Roundup and Sprayseed, M. Seymour, Department of Agriculture 41. Lathyrus development, C. Hanbury, CLIMA, the University of Western Australia 42. Poultry feeding trials, C. Hanbury1 and B. Hughes2 ,1CLIMA, the University of Western Australia,2Pig and Poultry Production Institute, South Australia Pulse Species 43. Species time of sowing, B. French, Department of Agriculture 44. High value pulses in the Great Southern, N. Brandon and N. Runciman, Department of Agriculture 45. Time of Harvest for improved seed yields of pulses, G. Riethmuller and B. French, Department of Agriculture 46. Phosphate acquisition efficiency of pulse crops, P. Rees, Plant Biology, Faculty of Natural and Agricultural Sciences UWA DEMONSTRATION OF PULSES IN THE FARMING SYSTEM 47. Howzat desi chickpea in the northern region, M. Harries, Department of Agriculture 48. Field pea harvest losses in the Great Southern and Esperance region, N. Brandon and M. Seymour, Department of Agriculture 49. Timing of crop topping in field pea, N. Brandon and G. Riethmuller, Department of Agriculture DISEASE AND PEST MANAGEMENT 50. Ascochyta blight of chickpea, B. MacLeod, M. Harries and N. Brandon, Department of Agriculture 51. Evaluation of Australian management packages, 52. Screening foliar fungicides 53. Row spacing and row spraying 54. Ascochyta management package for 2002, B. MacLeod, Department of Agriculture 55. Epidemiology of aschochyta and botrytis disease of pulses, J. Galloway and B. MacLeod, Department of Agriculture 56. Ascochyta blight of chickpea 57. Black spot of field pea 58. Ascochyta blight of faba bean 59. Ascochyta blight of lentil 60. Botrytis grey mould of chickpea 61. Black spot spread: Disease models are based in reality, J. Galloway, Department of Agriculture 62. Black spot spread: Scaling-up field data to simulate ‘Bakers farm’, M. Salam, J. Galloway, A. Diggle and B. MacLeod, Department of Agriculture 63. Pulse disease diagnostics, N. Burges and D. Wright, Department of Agriculture Viruses in pulses 64. Incidence of virus diseases in chickpea, J. Hawkes1, D. Thackray1 and R. Jones1,2, 1CLIMA, The University of Western Australia 2Department of Agriculture Insect pests 65. Risk assessment of aphid feeding damage on pulses, O. Edwards, J. Ridsdill-Smith, and R. Horbury, CSIRO Entomology 66. Optimum spray timing to control aphid feeding damage of faba bean, F. Berlandier, Department of Agriculture 67. Incorporation of pea weevil resistance into a field pea variety, O. Byrne1 and D. Hardie2, 1CLIMA, The University of Western Australia, 2Department of Agriculture 68. Screening wild chickpea species for resistance to Helicoverpa, T. Ridsdill-Smith1 and H. Sharma2,1CSIRO, Entomology, 2ICRISAT, Hyderabad 69. Field strategies to manage the evolution of pea weevil resistance in transgenic field pea, M. de Sousa Majer1, R. Roush2, D. Hardie3, R. Morton4 and T. Higgins4, 1Curtin University of Technology, 2Waite Campus, University of Adelaide, 3Department of Agriculture, 4CSIRO Plant Industry, Canberra 70. ACKNOWLEDGMENTS 71. Appendix 1: Summary of previous result

    Prediction of Bodyweight and Energy Expenditure Using Point Pressure and Foot Acceleration Measurements

    Get PDF
    Bodyweight (BW) is an essential outcome measure for weight management and is also a major predictor in the estimation of daily energy expenditure (EE). Many individuals, particularly those who are overweight, tend to underreport their BW, posing a challenge for monitors that track physical activity and estimate EE. The ability to automatically estimate BW can potentially increase the practicality and accuracy of these monitoring systems. This paper investigates the feasibility of automatically estimating BW and using this BW to estimate energy expenditure with a footwear-based, multisensor activity monitor. The SmartShoe device uses small pressure sensors embedded in key weight support locations of the insole and a heel-mounted 3D accelerometer. Bodyweight estimates for 9 subjects are computed from pressure sensor measurements when an automatic classification algorithm recognizes a standing posture. We compared the accuracy of EE prediction using estimated BW compared to that of using the measured BW. The results show that point pressure measurement is capable of providing rough estimates of body weight (root-mean squared error of 10.52 kg) which in turn provide a sufficient replacement of manually-entered bodyweight for the purpose of EE prediction (root-mean squared error of 0.7456 METs vs. 0.6972 METs). Advances in the pressure sensor technology should enable better accuracy of body weight estimation and further improvement in accuracy of EE prediction using automatic BW estimates

    Crop Updates 2000 - Lupins

    Get PDF
    This session covers nineteen papers from different authors: 1.1999 Lupin Highlights, Bill O’Neill, LUPIN PRODUCTIVITY IMPROVEMENTS AND INDUSTRY DEVELOPMENT LUPIN ANTHRACNOSE 2. Anthracnose – 1999/2000, Geoff Thomas and Mark Sweetingham, Agriculture Western Australia LUPIN BREEDING AND AGRONOMY 3. The genetic control of mildly restricted branching in narrow-leafed lupin (Lupinus augustifolius L), Kedar Adhikari1,3, Nick Galwey1,3 and Miles Dracup2,3 1Plant Sciences, University of Western Australia 2Agriculture Western Australia 3Cooperative Research Centre for Legumes in Mediterranean Agriculture, University of Western Australia 4. Genotype x time of sowing interaction in lupins – Mingenew, Bob French, Agriculture Western Australia 5. Genotype x time of sowing interaction in lupins – Wongan Hills, Bob French, Agriculture Western Australia 6. Genetic variation in lupin tolerance to Brown Leaf Spot, Bob French, Agriculture Western Australia 7. Yellow lupin management in Western Australia, Bob French, Agriculture Western Australia APHIDS AND VIRUS CONTROL 8. Forecasting aphid and virus risk in lupins, Debbie Thackray, Jenny Hawkes and Roger Jones, Centre for Legumes in Mediterranean Agriculture and Agriculture Western Australia 9. When should lupin crops be sprayed for aphids to achieve maximum yield response? Françoise Berlandier, Agriculture Western Australia 10. Yield limiting potential of the new, non-necrotic strain of bean yellow mosaic virus in narrow-leafed lupin, Roger Jones, Yvonne Cheng and Lisa Smith, Crop Improvement Institute, Agriculture Western Australia, and Centre for Legumes in Mediterranean Agriculture LUPIN NUTRITION 11. Increasing the value of a rotation by applying lime, Chris Gazey and Michael O’Connell, Agriculture Western Australia HERBICIDE TOLERANCE AND WEED CONTROL 12. Herbicide damage does not mean lower yield in Lupins, Peter Carlton, Trials Coordinator, Elders Limited 13. Effect of herbicides Tordonä 75D and Lontrelä, used for eradication of Skeleton Weed, on production of Lupins in following seasons, John R. Peirce and Brad J. Rayner, Agriculture Western Australia 14. Herbicide tolerance of lupins, Terry Piper, Agriculture Western Australia 15. Tanjil lupins will tolerate metribuzin under the right conditions, Peter Newman, Agronomist Elders Limited and Cameron Weeks, Mingenew/Irwin Group LUPIN ESTABLISHMENT 16. A new seed pressing system for ryegrass suppression and healthy lupin establishment, Mohammad Amjad and Glen Riethmuller,Agriculture Western Australia 17. Banded surfactant for better lupin yield on non-wetting sand, Dr Paul Blackwell, Agriculture Western Australia DROUGHT TOLERANCE 18. Drought tolerance of lupin genotypes in Western Australia, Jairo A. Palta1,2,, Neil C. Turner1,2, Robert J. French2,3 ,1CSIRO Plant Industry, Centre for Mediterranean Agricultural Research, 2Centre for Legumes in Mediterranean Agriculture, University of Western Australia, 3Agriculture Western Australia, 19. Stem carbohydrate in lupins: a possible buffer to maintain seed growth under adverse conditions, Bob French1, Tim Setter2, Jairo Palta3 , 1Agriculture Western Australia, and CLIMA, 2Agriculture Western Australia, 3CSIRO, Floreat Park, and CLIM
    corecore