13 research outputs found

    Lithium abundance in the metal-poor open cluster NGC 2243

    Full text link
    Lithium is a fundamental element for studying the mixing mechanisms acting in the stellar interiors, for understanding the chemical evolution of the Galaxy and the Big Bang nucleosynthesis. The study of Li in stars of open clusters (hereafter OC) allows a detailed comparison with stellar evolutionary models and permits us to trace its galactic evolution. The OC NGC 2243 is particularly interesting because of its low metallicity ([Fe/H]=0.54±0.10-0.54 \pm0.10 dex). We measure the iron and lithium abundance in stars of the metal-poor OC NGC 2243. The first aim is to determine whether the Li dip extends to such low metallicities, the second is to compare the results of our Li analysis in this OC with those present in 47 Tuc, a globular cluster of similar metallicity. We performed a detailed analysis of high-resolution spectra obtained with the multi-object facility FLAMES at the ESO VLT 8.2m telescope. Lithium abundance was derived through line equivalent widths and the OSMARCS atmosphere models. We determine a Li dip center of 1.06 MM_\odot, which is much smaller than that observed in solar metallicity and metal-rich clusters. This finding confirms and strengthens the conclusion that the mass of the stars in the Li dip strongly depends on stellar metallicity. The mean Li abundance of the cluster is logn(Li)=2.70\log n{\rm (Li)}=2.70 dex, which is substantially higher than that observed in 47 Tuc. We estimated an iron abundance of [Fe/H]=0.54±0.10-0.54 \pm0.10 dex for NGC 2243, which is similar (within the errors) to previous findings. The [α \alpha/Fe] content ranges from 0.00±0.140.00\pm0.14 for Ca to 0.20±0.220.20\pm0.22 for Ti, which is low when compared to thick disk stars and to Pop II stars, but compatible with thin disk objects. We found a mean radial velocity of 61.9 ±\pm 0.8 \kms for the cluster.Comment: 16 pages, 9 figures, Accepted for publication in Astronomy and Astrophysic

    An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status

    Full text link
    MATISSE is the second-generation mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric instrument will allow significant advances by opening new avenues in various fundamental research fields: studying the planet-forming region of disks around young stellar objects, understanding the surface structures and mass loss phenomena affecting evolved stars, and probing the environments of black holes in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the spectral domain of current optical interferometers by offering the L and M bands in addition to the N band. This will open a wide wavelength domain, ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band) / 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared imaging - closure-phase aperture-synthesis imaging - with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we present one of the main science objectives, the study of protoplanetary disks, that has driven the instrument design and motivated several VLTI upgrades (GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performances. We also discuss the current status of the MATISSE instrument, which is entering its testing phase, and the foreseen schedule for the next two years that will lead to the first light at Paranal.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2016, 11 pages, 6 Figure

    On the lithium dip in the metal poor open cluster NGC 2243

    No full text
    Lithium is a key element for studying the mixing mechanisms operating in stellar interiors. It can also be used to probe the chemical evolution of the Galaxy and the Big Bang nucleosynthesis. Measuring the abundance of Lithium in stars belonging to Open Clusters (hereafter OC) allows a detailed comparison with stellar evolutionary models. NGC 2243 is particularly interesting thanks to its relative low metallicity ([Fe/H]=-0.54 ± 0.10 dex). We performed a detailed analysis of high-resolution spectra obtained with the multi-object facility FLAMES at the VLT 8.2m telescope. Lithium abundance has been measured in 27 stars. We found a Li dip center of 1.06 M☉, which is significantly smaller than that observed in solar metallicity and metal-rich clusters. This finding confirms and strengthens the conclusion that the mass of the stars in the Li dip strongly depends on stellar metallicity. The mean Li abundance of the cluster is log n(Li) = 2.70 dex, which is substantially higher than that observed in 47 Tue. We derived an iron abundance of [Fe/H]=-0.54±0.10 dex for NGC 2243, in agreement (within the errors) with previous findings. <P /

    Toward accurate radial velocities with the fiber-fed GIRAFFE multi-object VLT spectrograph.

    No full text
    International audienceWe describe briefly the Data-Reduction of the VLT fiber-fed multi-object GIRAFFE spectrograph - part of the VLT FLAMES facility. We focus on specific features of GIRAFFE - the simultaneous wavelength calibration - and their impact on the data-reduction strategy. We describe the implementation of the global physical model and we compare the results obtained with the simulated, laboratory and preliminary data. We discuss the influence of critical parameters, the overall accuracy of the wavelength solution, and the stability and the robustness of the global model approach. We address the accuracy of radial velocity measurements illustrated by solar spectra obtained during the Preliminary Acceptance in Europe

    Detector upgrade for FLAMES: GIRAFFE gets red eyes

    No full text
    GIRAFFE is an intermediate resolution spectrograph covering a wavelength range from 360-930nm and fed by optical fibers as a part of FLAMES, the multi-object fiber facility mounted at the ESO VLT Kueyen. For some time we sought a new detector for GIRAFFE spectrograph to boost the instrument's red QE (Quantum E.ciency) capabilities, while still retaining very good blue response. We aimed also at reducing the strong fringing present in the red spectra. The adopted solution was an e2v custom 2-layer AR (Anti-Re.ection) coated Deep Depletion CCD44-82 CCD. This device was made in a new e2v Technologies AR coating plant and delivered to ESO in mid 2007 with performance that matches predictions. The new CCD was commissioned in May 2008.Here we report on the results

    Detector upgrade for FLAMES: GIRAFFE gets red eyes

    No full text
    GIRAFFE is an intermediate resolution spectrograph covering a wavelength range from 360-930nm and fed by optical fibers as a part of FLAMES, the multi-object fiber facility mounted at the ESO VLT Kueyen. For some time we sought a new detector for GIRAFFE spectrograph to boost the instrument's red QE (Quantum E.ciency) capabilities, while still retaining very good blue response. We aimed also at reducing the strong fringing present in the red spectra. The adopted solution was an e2v custom 2-layer AR (Anti-Re.ection) coated Deep Depletion CCD44-82 CCD. This device was made in a new e2v Technologies AR coating plant and delivered to ESO in mid 2007 with performance that matches predictions. The new CCD was commissioned in May 2008.Here we report on the results

    The X-ray emission from shock cooling zones in O star winds

    No full text
    A semi-empirical model is developed for the X-ray emission from O star winds, and used to analyze recent ROSAT PSPC spectra. The X-rays are assumed to originate from cooling zones behind shock fronts, where the cooling is primarily radiative at small radii in the wind, and due to expansion at large radii. The shocks are dispersed in a cold background wind whose X-ray opacity is provided by detailed NLTE calculations. This model is a natural extension of the Hillier et al. (1993) model of isothermal wind shocks. By assuming spatially constant shock temperatures, these authors achieved good fits to the data only by postulating two intermixed shock families of independent temperature and filling factor - i.e., by adjusting in parallel four parameters. By applying the present model to the analysis of high S/N PSPC spectra of three O-stars (#zeta# Pup, #iota# Ori, #zeta# Ori), we achieve fits of almost the same quality with only two parameters. This supports the idea that the two- or multi-component X-ray spectra are indeed due to stratified cooling layers. (orig.)36 refs.Available from TIB Hannover: RR 4697(985) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore