29 research outputs found

    Rapid Accumulation of CD14+CD11c+ Dendritic Cells in Gut Mucosa of Celiac Disease after in vivo Gluten Challenge

    Get PDF
    Of antigen-presenting cells (APCs) expressing HLA-DQ molecules in the celiac disease (CD) lesion, CD11c(+) dendritic cells (DCs) co-expressing the monocyte marker CD14 are increased, whereas other DC subsets (CD1c(+) or CD103(+)) and CD163(+)CD11c(-) macrophages are all decreased. It is unclear whether these changes result from chronic inflammation or whether they represent early events in the gluten response. We have addressed this in a model of in vivo gluten challenge.Treated HLA-DQ2(+) CD patients (n = 12) and HLA-DQ2(+) gluten-sensitive control subjects (n = 12) on a gluten-free diet (GFD) were orally challenged with gluten for three days. Duodenal biopsies obtained before and after gluten challenge were subjected to immunohistochemistry. Single cell digests of duodenal biopsies from healthy controls (n = 4), treated CD (n = 3) and untreated CD (n = 3) patients were analyzed by flow cytometry.In treated CD patients, the gluten challenge increased the density of CD14(+)CD11c(+) DCs, whereas the density of CD103(+)CD11c(+) DCs and CD163(+)CD11c(-) macrophages decreased, and the density of CD1c(+)CD11c(+) DCs remained unchanged. Most CD14(+)CD11c(+) DCs co-expressed CCR2. The density of neutrophils also increased in the challenged mucosa, but in most patients no architectural changes or increase of CD3(+) intraepithelial lymphocytes (IELs) were found. In control tissue no significant changes were observed.Rapid accumulation of CD14(+)CD11c(+) DCs is specific to CD and precedes changes in mucosal architecture, indicating that this DC subset may be directly involved in the immunopathology of the disease. The expression of CCR2 and CD14 on the accumulating CD11c(+) DCs indicates that these cells are newly recruited monocytes

    Quantum criticality in ferroelectrics

    Full text link
    Materials tuned to the neighbourhood of a zero temperature phase transition often show the emergence of novel quantum phenomena. Much of the effort to study these new effects, like the breakdown of the conventional Fermi-liquid theory of metals has been focused in narrow band electronic systems. Ferroelectric crystals provide a very different type of quantum criticality that arises purely from the crystalline lattice. In many cases the ferroelectric phase can be tuned to absolute zero using hydrostatic pressure or chemical or isotopic substitution. Close to such a zero temperature phase transition, the dielectric constant and other quantities change into radically unconventional forms due to the quantum fluctuations of the electrical polarization. The simplest ferroelectrics may form a text-book paradigm of quantum criticality in the solid-state as the difficulties found in metals due to a high density of gapless excitations on the Fermi surface are avoided. We present low temperature high precision data demonstrating these effects in pure single crystals of SrTiO3 and KTaO3. We outline a model for describing the physics of ferroelectrics close to quantum criticality and highlight the expected 1/T2 dependence of the dielectric constant measured over a wide temperature range at low temperatures. In the neighbourhood of the quantum critical point we report the emergence of a small frequency independent peak in the dielectric constant at approximately 2K in SrTiO3 and 3K in KTaO3 believed to arise from coupling to acoustic phonons. Looking ahead, we suggest that in ferroelectric materials supporting mobile charge carriers, quantum paraelectric fluctuations may mediate new effective electron-electron interactions giving rise to a number of possible states such as superconductivity.Comment: 10 pages, 4 figure

    Assessment of the impact of temperature on biofilm composition with a laboratory heat exchanger module

    No full text
    Temperature change over the length of heat exchangers might be an important factor affect-ing biofouling. This research aimed at assessing the impact of temperature on biofilm accumulation and composition with respect to bacterial community and extracellular polymeric substances. Two identical laboratory-scale plate heat exchanger modules were developed and tested. Tap water sup-plemented with nutrients was fed to the two modules to enhance biofilm formation. One “reference” module was kept at 20.0 ± 1.4◦ C and one “heated” module was operated with a counter-flow hot water stream resulting in a bulk water gradient from 20 to 27◦ C. Biofilms were grown during 40 days, sampled, and characterized using 16S rRNA gene amplicon sequencing, EPS extraction, FTIR, protein and polysaccharide quantifications. The experiments were performed in consecutive triplicate. Monitoring of heat transfer resistance in the heated module displayed a replicable biofilm growth profile. The module was shown suitable to study the impact of temperature on biofouling formation. Biofilm analyses revealed: (i) comparable amounts of biofilms and EPS yield in the reference and heated modules, (ii) a significantly different protein to polysaccharide ratio in the EPS of the reference (5.4 ± 1.0%) and heated modules (7.8 ± 2.1%), caused by a relatively lower extracellular sugar production at elevated temperatures, and (iii) a strong shift in bacterial community composition with increasing temperature. The outcomes of the study, therefore, suggest that heat induces a change in biofilm bacterial community members and EPS composition, which should be taken into consideration when investigating heat exchanger biofouling and cleaning strategies. Research potential and optimization of the heat exchanger modules are discussed.BT/Environmental Biotechnolog
    corecore