81 research outputs found

    The transition zone as a host for recycled volatiles: Evidence from nitrogen and carbon isotopes in ultra-deep diamonds from Monastery and Jagersfontein (South Africa)

    Get PDF
    Sublithospheric (ultra-deep) diamonds provide a unique window into the deepest parts of Earth's mantle, which otherwise remain inaccessible. Here, we report the first combined C- and N-isotopic data for diamonds from the Monastery and Jagersfontein kimberlites that sample the deep asthenosphere and transition zone beneath the Kaapvaal Craton, in the mid Cretaceous, to investigate the nature of mantle fluids at these depths and the constraints they provide on the deep volatile cycle. Both diamond suites exhibit very light δ13C values (down to − 26‰) and heavy δ15N (up to + 10.3‰), with nitrogen abundances generally below 70 at. ppm but varying up to very high concentrations (2520 at. ppm) in rare cases. Combined, these signatures are consistent with derivation from subducted crustal materials. Both suites exhibit variable nitrogen aggregation states from 25 to 100% B defects. Internal growth structures, revealed in cathodoluminescence (CL) images, vary from faintly layered, through distinct cores to concentric growth patterns with intermittent evidence for dissolution and regular octahedral growth layers in places. Modelling the internal co-variations in δ13C-δ15N-N revealed that diamonds grew from diverse C-H-O-N fluids involving both oxidised and reduced carbon species. The diversity of the modelled diamond-forming fluids highlights the complexity of the volatile sources and the likely heterogeneity of the deep asthenosphere and transition zone. We propose that the Monastery and Jagersfontein diamonds form in subducted slabs, where carbon is converted into either oxidised or reduced species during fluid-aided dissolution of subducted carbon before being re-precipitated as diamond. The common occurrence of recycled C and N isotopic signatures in super-deep diamonds world-wide indicates that a significant amount of carbon and nitrogen is recycled back to the deep asthenosphere and transition zone via subducting slabs, and that the transition zone may be dominated by recycled C and N

    What is the remaining status of adaptive servo-ventilation? The results of a real-life multicenter study (OTRLASV-study). Adaptive servo-ventilation in real-life conditions

    Get PDF
    Backgrounds: As a consequence of the increased mortality observed in the SERVE-HF study, many questions concerning the safety and rational use of ASV in other indications emerged. The aim of this study was to describe the clinical characteristics of ASV-treated patients in real-life conditions. Methods: The OTRLASV-study is a prospective, 5-centre study including patients who underwent ASV-treatment for at least 1 year. Patients were consecutively included in the study during the annual visit imposed for ASV- reimbursement renewal. Results: 177/214 patients were analysed (87.57% male) with a median (IQ25–75) age of 71 (65–77) years, an ASV- treatment duration of 2.88 (1.76–4.96) years, an ASV-usage of 6.52 (5.13–7.65) hours/day, and 54.8% were previously treated via continuous positive airway pressure (CPAP). The median Epworth Scale Score decreased from 10 (6–13.5) to 6 (3–9) (p < 0.001) with ASV-therapy, the apnea-hypopnea-index decreased from 50 (38–62)/h to a residual device index of 1.9 (0.7–3.8)/h (p < 0.001). The majority of patients were classified in a Central-Sleep-Apnea group (CSA; 59.3%), whereas the remaining are divided into an Obstructive-Sleep-Apnea group (OSA; 20.3%) and a Treatment-Emergent-Central-Sleep-Apnea group (TECSA; 20.3%). The Left Ventricular Ejection Fraction (LVEF) was > 45% in 92.7% of patients. Associated comorbidities/etiologies were cardiac in nature for 75.7% of patients (neurological for 12.4%, renal for 4.5%, opioid-treatment for 3.4%). 9.6% had idiopathic central-sleep-apnea. 6.2% of the patients were hospitalized the year preceding the study for cardiological reasons. In the 6 months preceding inclusion, night monitoring (i.e. polygraphy or oximetry during ASV usage) was performed in 34.4% of patients, 25.9% of whom required a subsequent setting change. According to multivariable, logistic regression, the variables that were independently associated with poor adherence (ASV-usage ≤4 h in duration) were TECSA group versus CSA group (p = 0.010), a higher Epworth score (p = 0.019) and lack of a night monitoring in the last 6 months (p < 0.05). Conclusions: In real-life conditions, ASV-treatment is often associated with high cardiac comorbidities and high compliance. Future research should assess how regular night monitoring may optimize devices settings and patient management

    Genes for hereditary sensory and autonomic neuropathies: a genotype–phenotype correlation

    Get PDF
    Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB7) and five genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor. We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7 mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR. Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are associated with HSAN. Our genotype–phenotype correlation study broadens the spectrum of HSAN and provides additional insights for molecular and clinical diagnosis

    Glimpses of biodiversity in the Kadalundi-Vallikunnu Community Reserve, the first Community Reserve of Kerala

    Get PDF
    Biodiversity is the mainstay of ecosystem services and functions and supports the livelihood of millions of people. Sustainable utilization and conservation of our rich biological diversity is a prerequisite for human survival. India is a megadiverse country and with only 2.4% of the world’s geographical area, it accounts for 7 to 8% of all recorded species. Our country is a signatory to various international instruments focussing on matters of biodiversity, including the Convention on Biological Diversity (CBD). The country has an obligation to protect our rich biological diversity and is one of the leaders in having established a comprehensive legal and institutional system to achieve the objectives of the CBD. Expansion of India’s Protected Area (PA) network, including ‘Conservation and Community Reserves’ is one of the important action points of the National Biodiversity Action Plan of our country. The Kadalundi-Vallikunnu Community Reserve which lies in the Malabar region is the first Community Reserve of Kerala and is known for its rich biological diversity. Endowed with dense mangrove forests and mudflats, the Community Reserve is an abode to a large number of avian fauna, including many migratory species. Fishing and ecotourism have been the mainstay of income generation for many local inhabitants of the Community Reserve. Considering the ecological significance, diversity of wetland avian fauna and the burden of heavy anthropogenic pressures, the Kadalundi estuary was officially declared as the ‘Kadalundi-Vallikunnu Community Reserve’ in October, 2007. Bio-inventorying and documentation of biodiversity is invaluable for the wise use of our ecosystems and the sustainability of biological resources. This publication is an outcome of a detailed study conducted by the ICAR-Central Marine Fisheries Research Institute in collaboration with the Kerala State Biodiversity Board to document the rich biodiversity of the Kadalundi-Vallikunnu Community Reserve and to assess the economic value of the various ecosystem services rendered by the Community Reserve. The publication provides an insight in to the diversity of plankton, seagrass, mangroves, mangrove associates, avian fauna, molluscs, crustaceans and finfishes of the Community Reserve with an overview of the economic value of the ecosystem services. The various threats faced by the Community Reserve and meaningful options for the conservation and sustainable management of the Reserve is also highlighted in this document

    Анализ причин производственного травматизма в организации

    Get PDF
    Статья посвящена вопросам исследования и снижения производственного травматизма в России. В статье раскрывается проблема производственного травматизма. Приведена статистика производственного травматизма в Российской Федерации. Представлены результаты общероссийского мониторинга, показана динамика производственного травматизма.The article is devoted to the issues of research and reducing industrial injuries in Russia. The article reveals the problem of occupational injuries. The statistics of occupational injuries in the Russian Federation. The results of the all-Russian monitoring are presented, the dynamics of industrial injuries are shown

    Genetic landscape of congenital insensitivity to pain and hereditary sensory and autonomic neuropathies

    Get PDF
    Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders exclusively or predominantly affecting the sensory and autonomic neurons. Due to the rarity of the diseases and findings based mainly on single case reports or small case series, knowledge about these disorders is limited. Here, we describe the molecular workup of a large international cohort of CIP/HSAN patients including patients from normally under-represented countries. We identify 80 previously unreported pathogenic or likely pathogenic variants in a total of 73 families in the >20 known CIP/HSAN-associated genes. The data expand the spectrum of disease-relevant alterations in CIP/HSAN, including novel variants in previously rarely recognized entities such as ATL3-, FLVCR1- and NGF-associated neuropathies and previously under-recognized mutation types such as larger deletions. In silico predictions, heterologous expression studies, segregation analyses and metabolic tests helped to overcome limitations of current variant classification schemes that often fail to categorize a variant as disease-related or benign. The study sheds light on the genetic causes and disease-relevant changes within individual genes in CIP/HSAN. This is becoming increasingly important with emerging clinical trials investigating subtype or gene-specific treatment strategies

    Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers

    Get PDF
    Aysegül Doğan,1 Mehmet E Yalvaç,1,2 Fikrettin Şahin,1 Alexander V Kabanov,3–5 András Palotás,6 Albert A Rizvanov71Department of Genetics and BioEngineering, College of Engineering and Architecture, Yeditepe University, Istanbul, Turkey; 2Center for Gene Therapy, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA; 3Center for Drug Delivery and Nanomedicine, 4Department of Pharmaceutical Sciences, College of Pharmacy, Durham Research Center, University of Nebraska Medical Center, Omaha, NE, USA; 5Laboratory of Chemical Design of Bio-nano-materials, Department of Chemistry, Mikhail V Lomonosov Moscow State University, Moscow, Russia; 6Asklepios-Med, Szeged, Hungary; 7Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, RussiaAbstract: Stem cell usage provides novel avenues of tissue regeneration and therapeutics across disciplines. Apart from ethical considerations, the selection and amplification of donor stem cells remain a challenge. Various biopolymers with a wide range of properties have been used extensively to deliver biomolecules such as drugs, growth factors and nucleic acids, as well as to provide biomimetic surface for cellular adhesion. Using human tooth germ stem cells with high proliferation and transformation capacity, we have investigated a range of biopolymers to assess their potential for tissue engineering. Tolerability, toxicity, and their ability to direct differentiation were evaluated. The majority of pluronics, consisting of both hydrophilic and hydrophobic poly(ethylene oxide) chains, either exerted cytotoxicity or had no significant effect on human tooth germ stem cells; whereas F68 increased the multi-potency of stem cells, and efficiently transformed them into osteogenic, chondrogenic, and adipogenic tissues. The data suggest that differentiation and maturation of stem cells can be promoted by selecting the appropriate mechanical and chemical properties of polymers. It has been shown for the first time that F68, with its unique molecular characteristics, has a great potential to increase the differentiation of cells, which may lead to the development of new tissue engineering strategies in regenerative medicine.Keywords: biopolymer, differentiation, human tooth germ stem cell (hTGSC), mesenchymal stem cell, pluronic, toxicit
    corecore