29 research outputs found

    Microcracks and Vortices in Superconducting Thin Films

    Get PDF
    In this work, superconducting YBa2 Cu3O6+x (YBCO) thin films have been studied with the experimental focus on the anisotropy of BaZrO3 (BZO) doped YBCOthin films and the theoretical focus on modelling flux pinning by numerically solving Ginzburg- Landau equations. Also, the structural properties of undoped YBCO thin films grown on NdGaO3 (NGO) and MgO substrates were investigated. The thin film samples were made by pulsed laser ablation on single crystal substrates. The structural properties of the thin films were characterized by X-ray diffraction and atomic force microscope measurements. The superconducting properties were investigated with a magnetometer and also with transport measurements in pulsed magnetic field up to 30 T. Flux pinning was modelled by restricting the value of the order parameter inside the columnar pinning sites and then solving the Ginzburg-Landau equations numerically with the restrictions in place. The computations were done with a parallel code on a supercomputer. The YBCO thin films were seen to develop microcracks when grown on NGO or MgO substrates. The microcrack formation was connected to the structure of the YBCO thin films in both cases. Additionally, the microcracks can be avoided by careful optimization of the deposition parameters and the film thickness. The BZO doping of the YBCO thin films was seen to decrease the effective electron mass anisotropy, which was seen by fitting the Blatter scaling to the angle dependence of the upper critical field. The Ginzburg-Landau simulations were able to reproduce the measured magnetic field dependence of the critical current density for BZO doped and undoped YBCO. The simulations showed that in addition to the large density also the large size of the BZO nanorods is a key factor behind the change in the power law behaviour between BZO doped and undoped YBCO. Additionally, the Ginzburg-Landau equations were solved for type I thin films where giant vortices were seen to appear depending on the film thickness. The simulations predicted that singly quantized vortices are stable in type I films up to quite large thicknesses and that the size of the vortices increases with decreasing film thickness, in a way that is similar to the behaviour of the interaction length of Pearl vortices.Siirretty Doriast

    Augmented Reality in Forest Machine Cabin

    Get PDF
    Augmented reality human machine interface is demonstrated in the cabin of a forest machine outdoors for the first time in real time. In this work, we propose a system setup and a real-time capable algorithm to augment the operator’s visual field with measurements from the forest machine and its environment. In the demonstration, an instrumented forestry crane and a lidar are used to model the pose of the crane and its surroundings. In our approach, a camera and an inertial measurement unit are used to estimate the pose of the operator’s head in difficult lighting conditions with the help of planar markers placed on the cabin structures. Using the estimate, a point cloud and a crane model are superimposed on the video feed to form an augmented reality view. Our system is tested to work outdoors using a forest machine research platform in real time with encouraging initial results.Peer reviewe

    Properties of Pr-and BZO-doped YBCO Multilayers

    Get PDF
    AbstractMultilayers of2wt-% Pr-and4wt-% BaZrO3-doped YBa2Cu3O6+x (YBCO) were deposited by pulsed laser ablation on SrTiO3 and MgO single crystals. The structural and superconducting properties of the multilayers are presented. Multilayering was found to improve the critical temperature and structural quality of the samples on SrTiO3, but it did not change the critical current density. On MgO, the critical temperature improved slightly,but the critical current density decreased

    Predictive Modeling of Dye Solar Cell Degradation

    Get PDF
    Degradation of dye solar cell performance based on the early changes in electrolyte color is predicted, allowing to estimate the lifetime of the dye solar cells even before their efficiency declines. Previous predictive models commonly rely on regression analysis of the predicted parameter; thus, they are unable to capture degradation before a significant decrease in performance. Degradation tests, even when accelerated, may take thousands of hours. As such, recognizing degradation trends early can lead to rewarding cuts in the duration of solar cell development pipelines. With accurate lifetime predictions, researchers can steer materials research to reach longer lifetimes in shorter cycles. The predictive power of our model relies on color changes in the electrolyte that directly correlate with the concentration of tri-iodide charge carriers within it, the loss of which is the predominant degradation mechanism for most liquid-electrolyte dye solar cells. By linking the physical mechanisms inside the cell, which eventually start to degrade the performance of dye solar cells, an early prediction of the lifetime can be made even when the device performance still appears stable. It is exemplified with dye solar cells that integrating architecture-specific knowledge on degradation mechanisms has potential to improve lifetime predictions for photovoltaics.</p

    Giant magnetoresistance response in Sr2FeMoO6 based organic spin valves

    Get PDF
    We report the fabrication of the first Sr2FeMoO6 based organic spin valve device using Tris(8-hydroxyquinolinato) aluminum (Alq(3)) as a spin transport layer. The characterization of the device confirms hysteretic magnetoresistance with approximately 20%-30% switching between high and low resistance states at low temperatures. The results demonstrate that organic semiconductors can form a suitable interface with double perovskite, half metallic Sr2FeMoO6, for efficient low temperature operation and have a potential to improve the room temperature performance significantly in tunneling devices where decay in spin diffusion length of organic layer does not affect the transport

    Detection of X-Ray Doses with Color-Changing Hackmanites: Mechanism and Application

    Get PDF
    Hackmanites, a variety of sodalite with the general formula Na8_{8}Al6_{6}Si6_{6}O24_{24}(Cl,S)2_{2}, are a family of nature-based smart materials having the ability for reversible photochromism upon UV or X-ray exposure. Being nontoxic, cheap, and durable, hackmanite would be an optimal material for the visual detection of the presence of X-rays in simple portable systems. However, its X-ray-induced coloring abilities are so far known only qualitatively. In this work, a combination of experimental and computational methods is used to reveal the mechanism of X-ray-induced color changing in these materials. Finally, their use is demonstrated both in color intensity-based X-ray dosimetry and photochromic X-ray imaging

    Control of the nanosized defect network in superconducting thin films by target grain size

    Get PDF
    A nanograined YBCO target, where a great number of grain boundaries, pores etc. exist, is shown to hold an alternative approach to future pulsed laser deposition based high-temperature superconductor thin film and coated conductor technologies. Although the nanograined material is introduced earlier, in this work, we comprehensively demonstrate the modified ablation process, together with unconventional nucleation and growth mechanisms that produces dramatically enhanced flux pinning properties. The results can be generalized to other complex magnetic oxides, where an increased number of defects are needed for modifying their magnetic and electrical properties, thus improving their usability in the future technological challenges

    Ultrasound irradiation as an effective tool in synthesis of the slag-based catalysts for carboxymethylation

    Get PDF
    Waste minimization strategy was applied in the current work for synthesis of the catalysts from industrial solid waste, namely desulfurization slag. The starting slag material comprising CaCO3, Ca(OH)2, SiO2, Al2O3, Fe2O3, and TiO2 was processed by various treating agents systematically varying the synthesis parameters. A novel efficient technique – ultrasound irradiation, was applied as an additional synthesis step for intensification of the slag dissolution and crystallization of the new phases. Physico-chemical properties of the starting materials and synthesized catalysts were evaluated by several analytical techniques. Treatment of the industrial slag possessing initially poor crystal morphology and a low surface area (6 m2/g) resulted in formation of highly-crystalline catalysts with well-developed structural properties. Surface area was increased up to 49 m2/g. High basicity of the neat slag as well as materials synthesized on its basis makes possible application of these materials in the reactions requiring basic active sites. Catalytic performance of the synthesized catalysts was elucidated in the synthesis of carbonate esters by carboxymethylation of cinnamyl alcohol with dimethyl carbonate carried out at 150 ◦C in a batch mode. Ultrasonication of the slag had a positive effect on the catalytic activity. Synthesized catalysts while exhibiting similar selectivity to the desired product (ca. 84%), demonstrated a trend of activity increase for materials prepared using ultrasonication pretreatment. The choice of the treating agent also played an important role in the catalytic performance. The highest selectivity to the desired cinnamyl methyl carbonate (88%) together with the highest activity (TOF35 =3.89*10</p

    Role of the Deposition Distance on Nanorod Growth and Flux Pinning in BaZrO3-Doped YBa2Cu3O6+x Thin Films: Implications for Superconducting Tapes

    Get PDF
    A complex deposition process of high-temperature superconducting (HTS) thin films and coated conductors is usually optimized by concentrating on the crystalline quality of the material, thus getting the best possible critical temperature and self-field properties. However, most of the HTS power applications that are based on coated conductors act at high magnetic fields, and thus an alternative approach focusing on the formation of an optimal network of columnar flux pinning centers is more reasonable. Therefore, we systematically show how a lengthening of the deposition distance produces perfectly aligned and distinctly longer self-assembled BaZrO3 (BZO) nanorods within the YBa2Cu3O6+x (YBCO) matrix. This method unambiguously enhances in-field properties such as pinning force, critical current density, and its isotropy along the YBCO c axis. The experimental results, especially formation of the c peak where the relative length of the nanorod is a key issue, are confirmed by the vortex dynamics simulations. Finally, we present a semiquantitative model governing the formation of nanorods that explains the experimentally observed improved nanorod growth as a function of the deposition distance via the associated variation of the fractional partial pressure between atomic species within the laser plume. </p
    corecore