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ARTICLE INFO ABSTRACT

Keywords: We report the fabrication of the first Sr,FeMoO, based organic spin valve device using Tris(8-
SryFeMoOg hydroxyquinolinato) aluminum (Alg;) as a spin transport layer. The characterization of the device confirms
Algs hysteretic magnetoresistance with approximately 20%-30% switching between high and low resistance states
Spin valve X at low temperatures. The results demonstrate that organic semiconductors can form a suitable interface with
Magnetoresistance

double perovskite, half metallic Sr,FeMoOy, for efficient low temperature operation and have a potential to

improve the room temperature performance significantly in tunneling devices where decay in spin diffusion
length of organic layer does not affect the transport.

1. Introduction

Sr,FeMoOg (SFMO) is a potential material regarding spintronics
due to theoretically suggested 100% spin polarization, according to
band structure calculations, and high Curie temperature (7-) around
420 K [1]. SFMO based magnetic tunnel junctions (MTJ) have been
reported in literature [2-4] with perovskite oxides as the tunnel barrier
layer. For all these devices, a very complicated junction fabrication
was crucial due to nanometer scale defects at the layer SFMO/oxide
interfaces. Organic semiconductors (OS) offer great promise for incor-
poration with transition metals and ferromagnetic epitaxial perovskite
metal oxides [5,6]. This is due to their structural flexibility and a
highly spin-polarized interface with the ferromagnets, known com-
monly as the spinterface [5]. Additionally, due to their considerable
spin diffusion time, a longer spin lifetime is expected of these de-
vices [7]. Indeed, promising results have already been demonstrated in
giant magnetoresistance (GMR) devices with manganite oxides, used
as one of the ferromagnetic layers [8-11]. Although during the last
decade, unquestionable improvements were reported in the field of
OS spintronics, open questions and challenges remain. For example,
despite the notable magnetoresistance at room temperature [5,12-16],
magnetoresistive response is greatly diminished at room temperature
and even at lower temperatures when compared with magnetoresis-
tance at cryogenic temperatures [8,11-14,16-20]. Understanding the
magnetoresistance phenomenon in these complex heterostructures and
across hybrid interfaces remained an active research topic in the field
of OS spintronics [5,21-23].

In OS spintronic devices La,_,Sr,MnO; (LSMO) is a commonly used
halfmetallic material [5]. Other candidates used as the ferromagnetic
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electrode include different materials, with varying spin polarization,
such as Fe, Co, Fe;O4, Co,MnSi and NiFe [5]. In the current study,
we provide the first report on GMR response from a SFMO based spin
valve with an OS spin transport layer. The OS transport layer used
here is the most widely reported small molecule semiconductor Tris(8-
hydroxyquinolinato) aluminum (Alqs)-layer. In addition, the spintronic
community has demonstrated magnetoresistive results with prototypes
combining ferromagnetic layers with organic semiconductors such as
Tg, rubrene, fullerene, RRP3HT and CuPc [5]. However, the earlier
work does not include prototypes with SFMO electrodes.

2. Experimental details

The SFMO layer was fabricated with pulsed laser deposition on a
single crystal SrTiO; substrate. The deposition was conducted in a 9 Pa
Ar-atmosphere with 2000 laser pulses, resulting in ~#150 nm thickness,
at 900 °C. After the deposition, the film was patterned with UV-
lithography technique. The patterned film consisted of 100 pm wide
SFMO stripe, which was 4 mm in length.

The rest of the spin valve multilayer structure was deposited by
thermal evaporation on top of the patterned SFMO electrode. The
pressure in the evaporator chamber during the deposition was kept be-
tween 500 Pa and 1000 Pa. The thickness of the layers was monitored
with a quartz microbalance resonator during the deposition. The Alqs
layer thickness was later determined using S neox confocal microscope
provided by Sensofar. First, the Alq; layer was deposited on top of the
SFMO layer resulting with approximately 45 nm thickness, followed
by a ferromagnetic 16 nm Co layer and a protective 2 nm Al layer. The
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Fig. 1. A schematic illustration of a single spin valve junction along with Sr,FeMoOg
and Alg; structures.

deposition was performed with a slit mask resulting with the total of
nine SFMO/Alq;/Co/Al junctions. A schematic illustration of a single
junction together with chemical structures of Alq; and SFMO crystal
structure is presented in Fig. 1.

Resistive measurements were done using Quantum Design Physical
Property Measurement System (PPMS) with resistivity option. Cur-
rent/voltage characteristics were recorded with a separate Keithley
2614B SourceMeter. Resistive measurements with PPMS were per-
formed at 10K, 100K, 200 K and 300 K temperatures between
—500 mT and +500 mT magnetic field range. Magnetic field was ap-
plied along the film in-plane. Current transport measurements with
Keithley were performed in zero magnetic field at 10 K, 100 K, 200 K
and 300 K temperatures.

Magnetic measurements were done using Quantum Design MPMS
SQUID magnetometer. The measurements included zero field cooled
(ZFC) and field cooled (FC) magnetization measurements in 100 mT
magnetic field between 10 K and 400 K temperatures. Magnetization
hysteresis measurements with magnetic field were performed between
—500 mT and +500 mT at 10 K, 100 K, 200 K, 300 K and 400 K temper-
atures. SQUID measurements were done with another SFMO thin film,
patterned as the one used in multilayer fabrication. This sample lacks
the following Alqg;, Co and Al layers. However, the actual multilayer
device was also measured. An additional Co thin film was deposited
on a glass plate and measured accordingly with SQUID magnetometer.
Magnetic field was applied along the film in-plane. Coercive field (B,)
for SFMO was evaluated as an average of absolute magnetic field
with zero magnetization from the hysteresis measurements. Remanence
magnetization (M,.,) for SFMO was determined as an average of
absolute magnetization value in zero magnetic field from the hysteresis
measurements.

3. Results and discussion
3.1. SryFeMoOq thin film and Co film on glass

In order to assess the quality of the SFMO and Co electrodes used in
the spin valves, zero-field-cooled, field-cooled (ZFC and FC) and mag-
netic field hysteresis measurements for magnetization were conducted
on identical SFMO and Co films. Fig. 2(a) shows the 100 mT ZFC and FC
magnetizations of SFMO as a function of temperature. The results have
been normalized according to FC magnetization at 10 K temperature
and the diamagnetic background arising from the substrate and the
sample holder has been subtracted from the signal. The results demon-
strate a regular decay of magnetization with increasing temperature,
along with ferri-paramagnetic transition at 7. The inset in Fig. 2(a)
shows the first order derivative of FC-magnetization as a function of
temperature. The minimum of the first order derivative was used to
define the T and the minimum falls close to 325K, which is well
within the range of our previously reported values [24,25]. The signal
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instability close to T, (seen in the inset of Fig. 2(a)), is due to a distor-
tion in the raw scan signal when the sum of the background and sample
moments approaches zero. This causes a distortion in the original data.
Fig. 2(b) shows the normalized magnetization hysteresis loops for the
patterned SFMO thin film (blue) and the Co film (red) evaporated on
a glass plate. The results for the SFMO stripe show the coercive field
(uoH,) of approximately 46 mT and 68% remanence magnetization
(M,.,,) from the saturation. The normalized magnetization hysteresis
for Co at 10 K shows a large exchange bias, with u,H_ values of
—149 mT and 19 mT. This would set the bias field (y,H,) to —65 mT.
Determined from u,H,, the value for M, is approximately 94% from
the saturation. The large exchange field seen in Co magnetization hys-
teresis could be due to Co oxidation. This could lead to an exchange bias
between the antiferromagnetic Co oxide and the metallic cobalt [26].
Since the magnetization hysteresis measurements were preceded by the
ZFC/FC measurement, the hysteresis measurement corresponds to an
FC hysteresis and therefore the exchange bias can emerge. Based on the
field and temperature dependent magnetization measurement results
obtained for the SFMO film, it can be argued that the film used in the
spin valve prototype is similar in quality when compared with our other
work regarding SFMO films [24,25].

Magnetoresistive measurements were done for a 100 pm wide SFMO
stripe. The measured stripe was included in the SFMO/Alq;/Co spin
valve, but this measurement concerns only the SFMO stripe. The low
field magnetoresistance (LFMR) results for the SFMO stripe used in the
spin valve prototype are presented in Fig. 2(c). The relative magne-
toresistance was calculated according to M R = (Ry — Rsgo mr)/ Rs00 mT>
where Ry is the resistance in the applied field H and Rsgy ,r is the
resistance in 500 mT magnetic field. The inset in Fig. 2(c) shows the
LFMR responses between —80 mT and 80 mT with scalar offsets. The
results at 10 K temperature show a clear hysteresis in the magnetore-
sistance, with maxima around -50 mT and 50 mT. From the zero field
to +500 mT, the sample shows a decrease in resistance, with LFMR of
5.3%. The LFMR signal diminishes with increasing temperature. The
results demonstrate that 5.3% magnetoresistance at 10 K goes down
to 1.9% at 100 K and to 0.8% at 200 K and to 0.7% at 300 K. While
the LFMR is still visible at 100 K, the signal becomes negligible at
200 K and above. Thus, the spin dependent scattering and tunneling
through grain boundaries are dominating the magnetoresistance signal
at 10 K and 100 K in the SFMO stripe. Despite the proclaimed 100%
spin polarization and demonstrated high Curie temperature above room
temperature [1], the decay of magnetoresistance in SFMO and in
similar materials is a well documented result. The explanations for this
phenomenon could for example be due to the possible deterioration
of grain boundary surface and film surface spin polarization [27,28].
Magnetoresistance results for SFMO thin films have been demonstrated
in previous research publications by us [29-31] and by others [4,32,
33]. Comparison between our previous data and the data presented
here shows that previously magnetoresistance has been measured with
a much higher magnetic field, up to +8 T. Considering the applied field
range here, the magnetoresistive response at 10 K is one of the highest
compared to our previous results. The differences in research methods
is simply due to different research interests. While the previous research
has focused on magnetoresistance phenomenon including high field
magnetoresistance, the interests here remain within the field range
where GMR response is expected.

The magnetoresistance results presented for the SFMO stripe are
typical responses in systems where the spin-dependent transport of
charge carriers combined with magnetic hysteresis between grains in-
duces scattering of charge carriers [1]. Our previous work confirms the
fabrication of texturized and ¢ axis oriented SFMO thin films on SrTiO,
substrates with identical deposition conditions [25,34]. Therefore, the
scattering of charge carriers probably takes place due to defects like
low angle grain boundaries, or antiphase boundaries [33]. These results
confirm that we do not have damages induced by the lithography
and wet etching process of SFMO, which could have caused additional
trapping sites causing increased LFMR.
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Fig. 2. (a) ZFC/FC measurement results for the patterned SFMO film. (b) Magnetization hysteresis measured at 10 K for the patterned SFMO film (blue) and the Co thin film (red)
deposited on a glass plate. The considerable exchange bias in Co hysteresis is likely due to the oxidation of Co since the sample lacks the protective Al layer. (c) Magnetoresistive
response from a 100 pm wide SFMO stripe, used in the spin valve structure, measured at 10 K, 100 K, 200 K and 300 K. The inset shows the magnetoresistance results with scalar

offsets.
3.2. Sr,FeMoOg based spin valves

In this work, we report the results for a typical multilayer junc-
tion with 100 pm SFMO stripe, named hereafter as S100. Fig. 3(a)
and (b) present the magnetoresistance measurement results for S100
at 10K and 300 K temperatures, respectively. The results of 10 K
measurements show approximately 30% magnetoresistance. The mag-
netoresistance response showed decay with increasing temperature
from 30% at 10 K, to 25% at 100 K, to 10% at 200 K and to 2% at
300 K, as shown in Fig. 3(c) as normalized magnetoresistance according
to 30% magnetoresistance response at 10 K. Although the signal near
the zero and 100 mT fields at 300 K, seen in Fig. 3(b), suggests higher
magnetoresistance response, this signal takes place likely due to contact
modification. This demonstrates a slight instability in the contacts
connecting the spin valve prototype to the PPMS. The hysteresis in
magnetoresistance loops is still visible at 100 K, but practically absent
at 200 K. Although the change in resistance is still significant at this
temperature around the zero field. However, no clear switching close
to the zero field takes place at 300 K. The zero field resistance at 10 K
was ~1.2 MQ.

Fig. 3(d) shows the data from Fig. 3(a) with field-cooled magnetic
moment magnetic field hysteresis results (M-H) for the device. These
results demonstrate the magnetic switching originating from SFMO and
Co layers. Results for the hysteresis measurements performed at various
temperatures are presented for SFMO film and for S100 in Fig. 3(e)
and (f), respectively. The results for SFMO film show regular hysteretic
magnetic field response in magnetic moment expected from SFMO thin
film. The device shows one gradual and one sharp switching. Compar-
ison with individual electrode’s magnetic switching pattern (Fig. 2(b))
suggests the sharper switching originates from magnetization reversal
of Co layer while the gradual transition might have its partial ori-
gin from SFMO magnetization reversal. The effect of exchange bias
at 10 K temperature is apparent, but is clearly diminished at higher
temperatures.

The presented magnetoresistive results are in a good agreement with
the few existing previous publications for SFMO based tunneling mag-
netoresistance (TMR) junctions measured at low temperatures, where
approximately 10%-50% magnetoresistance responses have been re-
ported [2,3]. A slight asymmetry in the switching field in the results for
$100 seen in Fig. 3 could be related to a partial Co oxidation resulting in

an exchange bias between ferro- and antiferromagnetic layers. Since the
vacuum condition between Alq; and Co deposition was never broken,
our hypothesis suggests that there is insufficient protective Al layer, as
the observed exchange bias in magnetic hysteresis measurements for
the device suggests.

Despite the fact that multiple research groups have demonstrated
possible spin valve operation at cryogenic temperatures in organic
semiconductor devices, deposited of electrode materials with high T,
much of the reported work show rather poor, or at least clearly dimin-
ished, magnetoresistance performance at elevated temperatures [5, see
citations within]. Although research articles at the same time report
relatively high room temperature magnetoresistance allegedly due to
high T electrode [35], the loss of magnetoresistance performance has
also been demonstrated in devices deposited of materials, which ideally
should better preserve spin polarization at higher temperatures [17].
One of the reasons causing the magnetoresistance decay could be the
loss of spin polarization at the ferromagnetic electrode and semicon-
ductor transport layer interface [36,37]. This in our case would result
with an insufficient spin injection in spite of high T, close to 325 K in
our SFMO film. Indeed, research reports argue the loss of surface spin
polarization in LSMO electrode as a contributing factor in the demise
of device magnetoresistance response at high temperatures [36,37].
The decrease of SFMO magnetoresistance at high temperatures seen in
Figs. 2(c) and 3(c) support this claim [11]. Although room temperature
magnetoresistance has been detected in similar systems compared to
our SFMO based system [38], device performance has remained far
from ideal low temperature scenario [37-39]. This might also suggest
that the surface spin polarization in our case is lost already at lower
temperatures, since we do not detect considerable magnetoresistance at
room temperature. In addition, other interfacial properties, for example
metal molecule hybridization, are reported influencing the device mag-
netoresistance in various systems [40-42], which may also contribute
to our device performance.

The decrease in spin diffusion length was directly demonstrated
by Drew et al. with direct evidences of spin injection into organic
transport layer [43]. These results also demonstrated that the spin
diffusion length in Alq; decreases from 35 nm to nearly 10 nm when
the temperature is increased from deep cryogenic to 50 K. In the event
of spin injection in our device at high temperatures, from the high T
electrode, the spin information would therefore be lost along with the
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Fig. 3. (a) The magnetoresistive response of the multilayer junction with a 100 pm SFMO stripe at 10 K. The colors (blue/red) demonstrate the scanning direction of the magnetic
field. The inset shows the zero field current/voltage characteristics. (b) The hysteretic magnetoresistance obtained at 300 K. Temperature dependence of normalized magnetoresistance
signals are presented in (c) for SFMO film and multilayer junction. (d) Field-cooled magnetic moment field dependence measurement results (M-H) at 10 K are presented with
the data from (a) (MR). Arrows are presented to illustrate magnetic switching of two ferromagnetic layers. (e) and (f) present magnetic field hysteresis measurements at various

temperatures for SFMO film and S100, respectively.

hysteretic magnetoresistance. Spin relaxation in Alq; has been reported
as a dominating mechanism behind magnetoresistance decrease in sim-
ilar systems [44]. The probable contributors for spin relaxation include
the spin orbit coupling and the hyperfine interaction [7,45,46]. It is
worth noting that while in Alq; based GMR devices, the magnetoresis-
tance decays consistently, in Alq; based magnetic tunneling junctions
magnetoresistance shows more robust magnetoresistance retention at
higher temperature [47]. However, due to the fundamental differences
between conduction mechanisms and between device structures, the
differences are as could be expected when considering spin relaxation
in device transport layer [48]. In organic semiconductor based GMR
devices the spin transport happens by drift or diffusion through the
transport layer, while in TMR devices the transport takes place due
to quantum mechanical tunneling of spin polarized carriers across the
barrier layer. Therefore, the loss of spin diffusion length in the barrier
layer does not effect the device response. To sum up the discussion
around the poor magnetoresistance performance at elevated temper-
atures, we can say that possible explanations for the phenomenon
include at least the demise of surface spin polarization at SFMO/Alq;
interface despite the high T of the electrode materials and the decrease
in spin relaxation length in organic transport layers. Same, although
sometimes rather speculative, conclusions are widely addressed in the
relevant literature [5].

Fig. 4 shows a schematic image about the discussion topics regard-
ing the magnetoresistive results. While multiple research publications
report a spin dependent transport of charge carriers between two ferro-
magnetic layers separated by a semiconductive organic transport layer,
it is also reported that in similar systems a similar signal depicting

spin transport could be achieved with only one ferromagnetic layer and
applying a nonmagnetic counter electrode [49]. These findings have
been argued through tunneling anisotropic magnetoresistance (TAMR)
[49]. TAMR is a phenomenon requiring no spin-transport through an
interface layer between electrodes and is directly related to magne-
tocrystalline anisotropy. In addition, some reports showed concern on
the possibility of spin injection into organic semiconductors [50]. How-
ever, considerable evidence for spin injection has been provided [43].
The questions regarding the magnetoresistance and reported spin valve
performance are far from obvious and remain practically unsolved and
somewhat controversial. Indeed, more research is required in order to
fully understand these topics. The polar coordinate image in Fig. 4
illustrates a common sin’a response in systems where TAMR gives rise
to a spin valve-like operation in multilayer device when the angle «
between magnetic field and crystalline axis is altered in magnetore-
sistance measurements. It remains inconclusive whether the measured
magnetoresistance signal presented here originates from TAMR, GMR
phenomenon or whether the signal is the sum of both mechanisms. This
topic will be covered in more detail in future research projects.
Another interesting aspect is the sign of the magnetoresistance. On a
first sight, our results would seem to contradict the previously reported
negative magnetoresistance response of the Alq; spin valves. There are
reports for both positive [10,11,39,51] and negative [8,9,37,39,51,52]
magnetoresistance responses in OS spin valves with manganite oxides,
the positive response being the increase in resistance with an an-
tiparallel orientation of magnetic moments between two ferromagnetic
layers. The early reports suggest the negative magnetoresistance re-
sponse in the LSMO/Alq;/Co spin valve can originate from the negative
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spin polarization of the Co layer while the LSMO spin polarization is
positive [8].

In our experiment, we have demonstrated a resistance increase
with an antiparallel magnetization alignment between the ferromag-
netic (ferri) SFMO and Co layers separated by Alq;. Earlier, Bibes
et al. [3] reported a 50% positive TMR response from SFMO/SrTiO;
/Co MTJ whereas a negative 50% TMR response was recorded in
LSMO/SrTiO3/Co MTJ [53]. From this result, it was concluded that
LSMO and SFMO have similar spin polarization value of nearly 80%,
however, with an inverse sign. Since LSMO spin polarization is positive,
SFMO spin polarization is negative. Therefore, our experimental results
are in line with the previously observed sign of magnetoresistance in
SFMO based junctions.

4. Conclusions

To summarize, we report the fabrication and magnetoresistive re-
sponse of Sr,FeMoOg based organic semiconductor spin valves. The re-
sults confirm hysteretic magnetoresistance with approximately
20%-30% switching between high and low resistance states at low
temperatures. Large magnetoresistive switching between the parallel
and antiparallel states decreases significantly with increasing tempera-
ture. The results presented here demonstrate that the spin valve devices
with SFMO as the spin injection and organic semiconductor as the spin
transport layer are a promising combination for high-efficiency spin-
tronic components. With optimization, further improvement in room
temperature magnetoresistance response is expected making SFMO an
important choice as spin polarized electrode for room temperature
operating spintronic devices.
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