10 research outputs found

    Bioengineered small extracellular vesicles deliver multiple SARS‐CoV‐2 antigenic fragments and drive a broad immunological response

    Get PDF
    The COVID‐19 pandemic highlighted the clear risk that zoonotic viruses pose to global health and economies. The scientific community responded by developing several efficacious vaccines which were expedited by the global need for vaccines. The emergence of SARS‐CoV‐2 breakthrough infections highlights the need for additional vaccine modalities to provide stronger, long‐lived protective immunity. Here we report the design and preclinical testing of small extracellular vesicles (sEVs) as a multi‐subunit vaccine. Cell lines were engineered to produce sEVs containing either the SARS‐CoV‐2 Spike receptor‐binding domain, or an antigenic region from SARS‐CoV‐2 Nucleocapsid, or both in combination, and we tested their ability to evoke immune responses in vitro and in vivo. B cells incubated with bioengineered sEVs were potent activators of antigen‐specific T cell clones. Mice immunised with sEVs containing both sRBD and Nucleocapsid antigens generated sRBD‐specific IgGs, nucleocapsid‐specific IgGs, which neutralised SARS‐CoV‐2 infection. sEV‐based vaccines allow multiple antigens to be delivered simultaneously resulting in potent, broad immunity, and provide a quick, cheap, and reliable method to test vaccine candidates

    Tetherin antagonism by SARS-CoV-2 ORF3a and spike protein enhances virus release

    Get PDF
    The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon‐induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS‐CoV‐2 infection causes tetherin downregulation and that tetherin depletion from cells enhances SARS‐CoV‐2 viral titres. We investigate the potential viral proteins involved in abrogating tetherin function and find that SARS‐CoV‐2 ORF3a reduces tetherin localisation within biosynthetic organelles where Coronaviruses bud, and increases tetherin localisation to late endocytic organelles via reduced retrograde recycling. We also find that expression of Spike protein causes a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS‐CoV‐2 and highlight the multiple distinct mechanisms by which SARS‐CoV‐2 subverts tetherin function

    Tetherin antagonism by SARS-CoV-2 ORF3a and spike protein enhances virus release

    Get PDF
    The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS-CoV-2 infection causes tetherin downregulation and that tetherin depletion from cells enhances SARS-CoV-2 viral titres. We investigate the potential viral proteins involved in abrogating tetherin function and find that SARS-CoV-2 ORF3a reduces tetherin localisation within biosynthetic organelles where Coronaviruses bud, and increases tetherin localisation to late endocytic organelles via reduced retrograde recycling. We also find that expression of Spike protein causes a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS-CoV-2 and highlight the multiple distinct mechanisms by which SARS-CoV-2 subverts tetherin function

    Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells

    No full text
    Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV) within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms

    EV-TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research

    No full text
    We argue that the field of extracellular vesicle (EV) biology needs more transparent reporting to facilitate interpretation and replication of experiments. To achieve this, we describe EV-TRACK, a crowdsourcing knowledgebase (http://evtrack.org) that centralizes EV biology and methodology with the goal of stimulating authors, reviewers, editors and funders to put experimental guidelines into practice

    EV-TRACK : transparent reporting and centralizing knowledge in extracellular vesicle research

    No full text
    We argue that the field of extracellular vesicle (EV) biology needs more transparent reporting to facilitate interpretation and replication of experiments. To achieve this, we describe EV-TRACK, a crowdsourcing knowledgebase (http://evtrack.org) that centralizes EV biology and methodology with the goal of stimulating authors, reviewers, editors and funders to put experimental guidelines into practice

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    No full text
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research

    No full text
    corecore