3 research outputs found

    A System to Monitor Cognitive Workload in Naturalistic High-Motion Environments

    Get PDF
    Across many careers, individuals face alternating periods of high and low attention and cognitive workload can impair cognitive function and undermine job performance. We have designed and are developing an unobtrusive system to Monitor, Extract, and Decode Indicators of Cognitive Workload (MEDIC) in naturalistic, high-motion environments. MEDIC is designed to warn individuals, teammates, or supervisors when steps should be taken to augment cognitive readiness. We first designed and manufactured a forehead sensor device that includes a custom fNIRS sensor and a three-axis accelerometer designed to be mounted on the inside of a baseball cap or headband, or standard issue gear such as a helmet or surgeon’s cap. Because the conditions under which MEDIC is designed to operate are more strenuous than typical research efforts assessing cognitive workload, motion artifacts in our data were a persistent issue. Results show wavelet-based filtering improved data quality to salvage data from even the highest-motion conditions. MARA spline motion correction did not further improve data quality. Our testing shows that each of the methods is extremely effective in reducing the effects of motion transients present in the data. In combination, they are able to almost completely remove the transients in the signal while preserving cardiac and low frequency information in the signal which was previously unrecoverable. This has substantially improved the stability of the physiological measures produced by the sensors in high noise conditions

    A Flexible Framework for the Creation of Narrative-Centered Tools

    Get PDF
    To better support the creation of narrative-centered tools, developers need a flexible framework to integrate, catalog, select, and reuse narrative models. Computational models of narrative enable the creation of software tools to aid narrative processing, analysis, and generation. Narrative-centered tools explicitly or implicitly embody one or more models of narrative by their definition. However, narrative model creation is often expensive and difficult with no guaranteed benefit to the end system. This paper describes our preliminary approach towards creating the SONNET narrative framework, a flexible framework to integrate, catalog, select, and reuse narrative models, thereby lowering development costs and improving benefits from each model. The framework includes a lightweight ontology language for the definition of key terms and interrelationships among them. The framework specifies model metadata to allow developers to discover and understand models more readily. We discuss the structure of this framework and ongoing development incorporating narrative models

    An Unobtrusive System to Measure, Assess, and Predict Cognitive Workload in Real-World Environments

    Get PDF
    Across many careers, individuals face alternating periods of high and low attention and cognitive workload, which can result in impaired cognitive functioning and can be detrimental to job performance. For example, some professions (e.g., fire fighters, emergency medical personnel, doctors and nurses working in an emergency room, pilots) require long periods of low workload (boredom), followed by sudden, high-tempo operations during which they may be required to respond to an emergency and perform at peak cognitive levels. Conversely, other professions (e.g., air traffic controllers, market investors in financial industries, analysts) require long periods of high workload and multitasking during which the addition of just one more task results in cognitive overload resulting in mistakes. An unobtrusive system to measure, assess, and predict cognitive workload could warn individuals, their teammates, or their supervisors when steps should be taken to augment cognitive readiness. In this talk I will describe an approach to this problem that we have found to be successful across work domains including: (1) a suite of unobtrusive, field-ready neurophysiological, physiological, and behavioral sensors that are chosen to best suit the target environment; (2) custom algorithms and statistical techniques to process and time-align raw data originating from the sensor suite; (3) probabilistic and statistical models designed to interpret the data into the human state of interest (e.g., cognitive workload, attention, fatigue); (4) and machine-learning techniques to predict upcoming performance based on the current pattern of events, and (5) display of each piece of information depending on the needs of the target user who may or may not want to drill down into the functioning of the system to determine how conclusions about human state and performance are determined. I will then focus in on our experimental results from our custom functional near-infrared spectroscopy sensor, designed to operate in real-world environments to be worn comfortably (e.g., positioned into a baseball cap or a surgeons cap) to measure changes in brain blood oxygenation without adding burden to the individual being assessed
    corecore