90 research outputs found

    Foresight-driven Approach to Support the Proactive Adaptation of Future Sustainability Related Regulatory Frameworks: European Port Cluster Study

    Get PDF
    Seaports (hereafter “ports”) within the European Union are facing increasingly restrictive regulation in the near future from various sources driven by climate change prevention and public opinion supporting “green” values. Ports are complex hubs for maritime transportation systems and global supply chains, as well as an integral part of critical national infrastructures. However, they are also significant individual sources of harmful emissions, and their involvement is crucial to reducing transportation-related environmental impacts. To meet future regulatory requirements, stakeholders will need to find ways to align their policies accordingly and create long-term pathways toward these ambitious targets. The empirical case study presented in this paper among European Port Cluster (EPC) stakeholders distinctly reflects the mounting importance of environmental policies and the need for further preparative measures for meeting future demands. This paper emphasizes the intensified impact of forthcoming regulation on existing business models in the EPC and contributes a foresight-based framework to approaching this issue systematically. The adoption of future-oriented regulation is a non-linear, potentially disruptive, and complex foresight process that requires each stakeholder to formulate their own strategic pathway toward a target-seeking scenario. Changing direction from the status quo toward sustainability also requires a strong commitment beyond mere regulatory compliance

    P4-ATPases:lipid flippases in cell membranes

    Get PDF
    Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other and thereby help generate membrane lipid asymmetry. Among these ATP-driven transporters, the P4 subfamily of P-type ATPases (P4-ATPases) comprises lipid flippases that catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of cell membranes. While initially characterized as aminophospholipid translocases, recent studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates, including lysophospholipids and synthetic alkylphospholipids. At the same time, the cellular processes known to be directly or indirectly affected by this class of transporters have expanded to include the regulation of membrane traffic, cytoskeletal dynamics, cell division, lipid metabolism, and lipid signaling. In this review, we will summarize the basic features of P4-ATPases and the physiological implications of their lipid transport activity in the cell

    Loss of the <i>Arabidopsis thaliana</i> P4-ATPases ALA6 and ALA7 impairs pollen fitness and alters the pollen tube plasma membrane

    Get PDF
    Members of the P4 subfamily of P-type ATPases are thought to create and maintain lipid asymmetry in biological membranes by flipping specific lipids between membrane leaflets. In Arabidopsis, 7 of the 12 Aminophospholipid ATPase (ALA) family members are expressed in pollen. Here we show that double knockout of ALA6 and ALA7 (ala6/7) results in siliques with a ~2-fold reduction in seed set with a high frequency of empty seed positions near the bottom. Seed set was reduced to near zero when plants were grown under a hot/cold temperature stress. Reciprocal crosses indicate that the ala6/7 reproductive deficiencies are due to a defect related to pollen transmission. In-vitro growth assays provide evidence that that ala6/7 pollen tubes are short and slow, with ~2-fold reductions in both maximal growth rate and overall length relative to wild-type. Outcrosses show that when ala6/7 pollen are in competition with wild-type pollen, they have a near 0% success rate in fertilizing ovules near the bottom of the pistil, consistent with ala6/7 pollen having short and slow growth defects. The ala6/7 phenotypes were rescued by the expression of either an ALA6-YFP or GFP-ALA6 fusion protein, which showed localization to both the plasma membrane and highly-mobile endomembrane structures. A mass spectrometry analysis of mature pollen grains revealed significant differences between ala6/7 and wild-type, both in the relative abundance of lipid classes and in the average number of double bonds present in acyl side chains. A change in the properties of the ala6/7 plasma membrane was also indicated by a ~10-fold reduction of labeling by lipophilic FM-dyes relative to wild-type. Together, these results indicate that ALA6 and ALA7 provide redundant activities that function to directly or indirectly change the distribution and abundance lipids in pollen, and support a model in which ALA6 and ALA7 are critical for pollen fitness under normal and temperature-stress conditions

    The lipid head group is the key element for substrate recognition by the P4 ATPase ALA2:A phosphatidylserine flippase

    Get PDF
    Type IV P-type ATPases (P4 ATPases) are lipid flippases that catalyze phospholipid transport from the exoplasmic to the cytoplasmic leaflet of cellular membranes, but the mechanism by which they recognize and transport phospholipids through the lipid bilayer remains unknown. In the present study, we succeeded in purifying recombinant aminophospholipid ATPase 2 (ALA2), a member of the P4 ATPase subfamily in Arabidopsis thaliana, in complex with the ALA-interacting subunit 5 (ALIS5). The ATP hydrolytic activity of the ALA2-ALIS5 complex was stimulated in a highly specific manner by phosphatidylserine. Small changes in the stereochemistry or the functional groups of the phosphatidylserine head group affected enzymatic activity, whereas alteration in the length and composition of the acyl chains only had minor effects. Likewise, the enzymatic activity of the ALA2-ALIS5 complex was stimulated by both mono- and di-acyl phosphatidylserines. Taken together, the results identify the lipid head group as the key structural element for substrate recognition by the P4 ATPase

    The P5A ATPase Spf1p is stimulated by phosphatidylinositol 4-phosphate and influences cellular sterol homeostasis

    Get PDF
    P5A ATPases are expressed in the endoplasmic reticulum (ER) of all eukaryotic cells, and their disruption results in severe ER stress. However, the function of these ubiquitous membrane proteins, which belong to the P-type ATPase superfamily, is unknown. We purified a functional tagged version of the Saccharomyces cerevisiae P5A ATPase Spf1p and observed that the ATP hydrolytic activity of the protein is stimulated by phosphatidylinositol 4-phosphate (PI4P). Furthermore, SPF1 exhibited negative genetic interactions with SAC1, encoding a PI4P phosphatase, and with OSH1 to OSH6, encoding Osh proteins, which, when energized by a PI4P gradient, drive export of sterols and lipids from the ER. Deletion of SPF1 resulted in increased sensitivity to inhibitors of sterol production, a marked change in the ergosterol/lanosterol ratio, accumulation of sterols in the plasma membrane, and cytosolic accumulation of lipid bodies. We propose that Spf1p maintains cellular sterol homeostasis by influencing the PI4P-induced and Osh-mediated export of sterols from the ER
    • …
    corecore