1,339 research outputs found

    Thermal denaturation of fluctuating finite DNA chains: the role of bending rigidity in bubble nucleation

    Full text link
    Statistical DNA models available in the literature are often effective models where the base-pair state only (unbroken or broken) is considered. Because of a decrease by a factor of 30 of the effective bending rigidity of a sequence of broken bonds, or bubble, compared to the double stranded state, the inclusion of the molecular conformational degrees of freedom in a more general mesoscopic model is needed. In this paper we do so by presenting a 1D Ising model, which describes the internal base pair states, coupled to a discrete worm like chain model describing the chain configurations [J. Palmeri, M. Manghi, and N. Destainville, Phys. Rev. Lett. 99, 088103 (2007)]. This coupled model is exactly solved using a transfer matrix technique that presents an analogy with the path integral treatment of a quantum two-state diatomic molecule. When the chain fluctuations are integrated out, the denaturation transition temperature and width emerge naturally as an explicit function of the model parameters of a well defined Hamiltonian, revealing that the transition is driven by the difference in bending (entropy dominated) free energy between bubble and double-stranded segments. The calculated melting curve (fraction of open base pairs) is in good agreement with the experimental melting profile of polydA-polydT. The predicted variation of the mean-square-radius as a function of temperature leads to a coherent novel explanation for the experimentally observed thermal viscosity transition. Finally, the influence of the DNA strand length is studied in detail, underlining the importance of finite size effects, even for DNA made of several thousand base pairs.Comment: Latex, 28 pages pdf, 9 figure

    Ionic Capillary Evaporation in Weakly Charged Nanopores

    Full text link
    Using a variational field theory, we show that an electrolyte confined to a neutral cylindrical nanopore traversing a low dielectric membrane exhibits a first-order ionic liquid-vapor pseudo-phase-transition from an ionic-penetration "liquid" phase to an ionic-exclusion "vapor" phase, controlled by nanopore-modified ionic correlations and dielectric repulsion. For weakly charged nanopores, this pseudotransition survives and may shed light on the mechanism behind the rapid switching of nanopore conductivity observed in experiments.Comment: This version is accepted for publication in PR

    AN INTEGRATED APPROACH TO PREVENT THE EROSION OF SALT MARSHES IN THE LAGOON OF VENICE

    Get PDF
    The loss of coastal habitats is a widespread problem in Europe. To protect the intertidal salt marshes of the lagoon of Venice from the erosion due to natural and human causes which is diffusely and intensely impacting them, the European Commission has funded the demonstrative project LIFE VIMINE. LIFE VIMINE aims to protect the most interior, hard-to-access salt marshes in the northern lagoon of Venice through an integrated approach, whose core is the prevention of erosion through numerous, small but spatially-diffuse soil-bioengineering protections works, mainly placed through semi-manual labour and with low impact on the environment and the landscape. The effectiveness of protection works in the long term is ensured through routine, temporally-continuous and spatially-diffuse actions of monitoring and maintenance. This method contrasts the common approach to managing hydraulic risk and erosion in Italy which is based on large, one-off and irreversible protection actions. The sustainability of the LIFE VIMINE approach is ensured by the participatory involvement of stakeholders and the recognition that protecting salt marshes means defending the benefits they provide to society through their ecological functions, as well as protecting the jobs linked to the existence or conservation of this habitat

    Inhibitory control in mind and brain 2.0: blocked-input models of saccadic countermanding.

    Get PDF
    The interactive race model of saccadic countermanding assumes that response inhibition results from an interaction between a go unit, identified with gaze-shifting neurons, and a stop unit, identified with gaze-holding neurons, in which activation of the stop unit inhibits the growth of activation in the go unit to prevent it from reaching threshold. The interactive race model accounts for behavioral data and predicts physiological data in monkeys performing the stop-signal task. We propose an alternative model that assumes that response inhibition results from blocking the input to the go unit. We show that the blocked-input model accounts for behavioral data as accurately as the original interactive race model and predicts aspects of the physiological data more accurately. We extend the models to address the steady-state fixation period before the go stimulus is presented and find that the blocked-input model fits better than the interactive race model. We consider a model in which fixation activity is boosted when a stop signal occurs and find that it fits as well as the blocked input model but predicts very high steady-state fixation activity after the response is inhibited. We discuss the alternative linking propositions that connect computational models to neural mechanisms, the lessons to be learned from model mimicry, and generalization from countermanding saccades to countermanding other kinds of responses

    Selective Laser Melting of Ti6Al4V: Effects of Heat Accumulation Phenomena Due to Building Orientation

    Get PDF
    Titanium alloy Ti6Al4V is one of the most utilized alloys in the field of additive manufacturing due to the excellent combination of mechanical properties, density and good corrosion behavior. These characteristics make the use of this material particularly attractive for additively manufacturing components with complex geometry in sectors such as aeronautics and biomedical. Selective Laser Melting (SLM), by which a component is fabricated by selectively melting of stacked layers of powder using a laser beam, is the one of most promising additive manufacturing technologies for Ti6Al4V alloy. Although this technique offers numerous advantages, it has some critical issues related to the high thermal gradients, associated with the process, promoting the formation of a metastable martensitic microstructure resulting in high tensile strength but poor ductility of the produced parts. The formation of microstructural defects such as balling and porosity can occur together with the presence of residual stresses that may significantly affect the mechanical characteristics of the component. Specific process parameters and geometries can determine heat accumulation phenomena that result in a progressive decrease in thermal gradients between layers. These heat accumulation phenomena are influenced by the number of layers deposited, but also by the building orientation that, for a given geometry, determines a variation of the deposited surface for each layer. © 2022 The Author(s). Published by Trans Tech Publications Ltd, Switzerland

    Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores

    Full text link
    A variational theory is developed to study electrolyte solutions, composed of interacting point-like ions in a solvent, in the presence of dielectric discontinuities and charges at the boundaries. Three important and non-linear electrostatic effects induced by these interfaces are taken into account: surface charge induced electrostatic field, solvation energies due to the ionic cloud, and image charge repulsion. Our variational equations thus go beyond the mean-field theory. The influence of salt concentration, ion valency, dielectric jumps, and surface charge is studied in two geometries. i) A single neutral air-water interface with an asymmetric electrolyte. A charge separation and thus an electrostatic field gets established due to the different image charge repulsions for coions and counterions. Both charge distributions and surface tension are computed and compared to previous approximate calculations. For symmetric electrolyte solutions close to a charged surface, two zones are characterized. In the first one, with size proportional to the logarithm of the coupling parameter, strong image forces impose a total ion exclusion, while in the second zone the mean-field approach applies. ii) A symmetric electrolyte confined between two dielectric interfaces as a simple model of ion rejection from nanopores. The competition between image charge repulsion and attraction of counterions by the membrane charge is studied. For small surface charge, the counterion partition coefficient decreases with increasing pore size up to a critical pore size, contrary to neutral membranes. For larger pore sizes, the whole system behaves like a neutral pore. The prediction of the variational method is also compared with MC simulations and a good agreement is observed.Comment: This version is accepted for publication in Phys. Rev. E

    Ductility and linear energy density of Ti6Al4V parts produced with additive powder bed fusion technology

    Get PDF
    Hybrid metal forming processes involve the integration of commonly used sheet metal forming processes, as bending, deep drawing and incremental forming, with additive manufacturing processes as Powder Bed Fusion. In recent ybears, these integrations have been more developed for manufacturing sectors characterized by components with complex geometries in low numbers, as the aerospace sector. Hybrid additive manufacturing overcomes the typical limitations of additive manufacturing related to low productivity, metallurgical defects and low dimensional accuracy. In this perspective, a key aspect of hybrid processes is the production of parts characterized by high strength and ductility. In the present work, a study was carried out on the influence of process parameters, such as laser power and scanning speed, on material ductility for Ti6Al4V alloy samples produced by Selective Laser Melting. In particular, the material strength and ductility were related to the process linear energy density (LED)

    Hybrid prediction-optimization approaches for maximizing parts density in SLM of Ti6Al4V titanium alloy

    Get PDF
    It is well known that the processing parameters of selective laser melting (SLM) highly influence mechanical and physical properties of the manufactured parts. Also, the energy density is insufficient to detect the process window for producing full dense components. In fact, parts produced with the same energy density but different combinations of parameters may present different properties even under the microstructural viewpoint. In this context, the need to assess the influence of the process parameters and to select the best parameters set able to optimize the final properties of SLM parts has been capturing the attention of both academics and practitioners. In this paper different hybrid prediction-optimization approaches for maximizing the relative density of Ti6Al4V SLM manufactured parts are proposed. An extended design of experiments involving six process parameters has been configured for constructing two surrogate models based on response surface methodology (RSM) and artificial neural network (ANN), respectively. The optimization phase has been performed by means of evolutionary computations. To this end, three nature-inspired metaheuristic algorithms have been integrated with the prediction modelling structures. A series of experimental tests has been carried out to validate the results from the proposed hybrid optimization procedures. Also, a sensitivity analysis based on the results from the analysis of variance was executed to evaluate the influence of the processing parameter and their reciprocal interactions on the part porosity

    Bubble Growth in Superfluid 3-He: The Dynamics of the Curved A-B Interface

    Full text link
    We study the hydrodynamics of the A-B interface with finite curvature. The interface tension is shown to enhance both the transition velocity and the amplitudes of second sound. In addition, the magnetic signals emitted by the growing bubble are calculated, and the interaction between many growing bubbles is considered.Comment: 20 pages, 3 figures, LaTeX, ITP-UH 11/9
    • …
    corecore