1,863 research outputs found

    Stagnation Point Radiative Heating Relations for Venus Entry

    Get PDF
    Improved analytic expressions for calculating the stagnation point radiative heating during entry into the atmosphere of Venus have been developed. These analytic expressions can be incorporated into entry trajectory simulation codes. Together with analytical expressions for convective heating at the stagnation point, the time-integrated total heat load at the stagnation point is used in determining the thickness of protective material required, and hence the mass of the fore body heatshield of uniform thickness

    CFD Simulations of Boundary Layer Transition Flight Experiment Catalytic Coating Data

    Get PDF
    A CFD analysis is performed to model the catalytic jump in surface heating rates measured as part of the Space Shuttle Boundary Layer Transition (BLT) flight experiment

    Embedding effective depression care: using theory for primary care organisational and systems change

    Get PDF
    Background: depression and related disorders represent a significant part of general practitioners (GPs) daily work. Implementing the evidence about what works for depression care into routine practice presents a challenge for researchers and service designers. The emerging consensus is that the transfer of efficacious interventions into routine practice is strongly linked to how well the interventions are based upon theory and take into account the contextual factors of the setting into which they are to be transferred. We set out to develop a conceptual framework to guide change and the implementation of best practice depression care in the primary care setting.Methods: we used a mixed method, observational approach to gather data about routine depression care in a range of primary care settings via: audit of electronic health records; observation of routine clinical care; and structured, facilitated whole of organisation meetings. Audit data were summarised using simple descriptive statistics. Observational data were collected using field notes. Organisational meetings were audio taped and transcribed. All the data sets were grouped, by organisation, and considered as a whole case. Normalisation Process Theory (NPT) was identified as an analytical theory to guide the conceptual framework development.Results: five privately owned primary care organisations (general practices) and one community health centre took part over the course of 18 months. We successfully developed a conceptual framework for implementing an effective model of depression care based on the four constructs of NPT: coherence, which proposes that depression work requires the conceptualisation of boundaries of who is depressed and who is not depressed and techniques for dealing with diffuseness; cognitive participation, which proposes that depression work requires engagement with a shared set of techniques that deal with depression as a health problem; collective action, which proposes that agreement is reached about how care is organised; and reflexive monitoring, which proposes that depression work requires agreement about how depression work will be monitored at the patient and practice level. We describe how these constructs can be used to guide the design and implementation of effective depression care in a way that can take account of contextual differences.Conclusions: ideas about what is required for an effective model and system of depression care in primary care need to be accompanied by theoretically informed frameworks that consider how these can be implemented. The conceptual framework we have presented can be used to guide organisational and system change to develop common language around each construct between policy makers, service users, professionals, and researchers. This shared understanding across groups is fundamental to the effective implementation of change in primary care for depressio

    Development of a Three-Dimensional, Unstructured Material Response Design Tool

    Get PDF
    A preliminary verification and validation of a new material response model is presented. This model, Icarus, is intended to serve as a design tool for the thermal protection systems of re-entry vehicles. Currently, the capability of the model is limited to simulating the pyrolysis of a material as a result of the radiative and convective surface heating imposed on the material from the surrounding high enthalpy gas. Since the major focus behind the development of Icarus has been model extensibility, the hope is that additional physics can be quickly added. This extensibility is critical since thermal protection systems are becoming increasing complex, e.g. woven carbon polymers. Additionally, as a three-dimensional, unstructured, finite-volume model, Icarus is capable of modeling complex geometries. In this paper, the mathematical and numerical formulation is presented followed by a discussion of the software architecture and some preliminary verification and validation studies

    Comparison of CFD Predictions with Shuttle Global Flight Thermal Imagery and Discrete Surface Measurements

    Get PDF
    Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended

    General 2 charge geometries

    Full text link
    Two charge BPS horizon free supergravity geometries are important in proposals for understanding black hole microstates. In this paper we construct a new class of geometries in the NS1-P system, corresponding to solitonic strings carrying fermionic as well as bosonic condensates. Such geometries are required to account for the full microscopic entropy of the NS1-P system. We then briefly discuss the properties of the corresponding geometries in the dual D1-D5 system.Comment: 44 page

    Diurnal, seasonal, and annual trends in tropospheric CO in Southwest London during 2000–2015: Wind sector analysis and comparisons with urban and remote sites

    Get PDF
    Ambient carbon monoxide (CO) and meteorological parameters measured at the Egham (EGH) semi-rural site in SW London during 2000–2015 have permitted wind sector analysis of diurnal and seasonal cycles, and interpretation of long-term trends. CO daily amplitudes are used as a proxy for anthropogenic emissions. At EGH, morning and evening peaks in CO arise from the dominant contribution of road transport sources. Smaller amplitudes are observed during weekends than weekdays due to lower combustion emissions, and for mornings compared to evenings due to the timing of the development and break-up of the nocturnal inversion layer or planetary boundary layer (PBL). A wavelet transform revealed that the dominant mode of CO variability is the annual cycle, with apparent winter maxima likely due to increased CO emissions from domestic heating with summer minima ascribed to enhanced dispersion and dilution during the annual maximum of PBL mixing heights. Over the last two decades, both mitigation measures to reduce CO emissions and also a major switch to diesel cars, have accompanied a change at EGH from the dominance of local diurnal sources to a site measuring close to Atlantic background levels in summer months. CO observed in the S and SW wind sectors has declined by 4.7 and 5.9 ppb yr−1 respectively. The EGH CO record shows the highest levels in the early 2000s, with levels in E and calm winds comparable to those recorded at background stations in Greater London. However, since 2012, levels in S-SW sector have become more comparable with Mace Head background except during rush-hour periods. Marked declines in CO are observed during 2000–2008 for the NE, E, SE (London) and calm wind sectors, with the smallest declines observed for the S, SW and W (background) sectors. For the majority of wind sectors, the decline in CO is less noticeable since 2008, with an apparent stabilisation for NE, E and SE after 2009. The EGH CO data record exhibits a similar but slower exponential decay, but from a much lower starting concentration, than do CO data recorded at selected monitoring sites in urban areas in SE England. CO/CO2 residuals determined using a 1 h window data in the diurnal cycle demonstrate a clear decline in CO from 2000 to 2015 during daily periods of increased vehicle traffic, which is consistent with a sustained reduction in CO emissions from the road transport sector

    Immunotherapy of lung cancer: An update

    Get PDF
    In Germany lung cancer is the leading cause of cancer-associated death in men. Surgery, chemotherapy and radiation may enhance survival of patients suffering from lung cancer but the enhancement is typically transient and mostly absent with advanced disease; eventually more than 90% of lung cancer patients will die of disease. New approaches to the treatment of lung cancer are urgently needed. Immunotherapy may represent one new approach with low toxicity and high specificity but implementation has been a challenge because of the poor antigenic characterization of these tumors and their ability to escape immune responses. Several different immunotherapeutic treatment strategies have been developed. This review examines the current state of development and recent advances with respect to non-specific immune stimulation, cellular immunotherapy ( specific and non-specific), therapeutic cancer vaccines and gene therapy for lung cancer. The focus is primarily placed on immunotherapeutic cancer treatments that are already in clinical trial or well progressed in preclinical studies. Although there seems to be a promising future for immunotherapy in lung cancer, presently there is not standard immunotherapy available for clinical routine

    Physics-Based Modeling of Meteor Entry and Breakup

    Get PDF
    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup.Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood.On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heatshields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is 13 kms (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kW/sq cm. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to 20 kms; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses. With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current simulation tools to spherical geometries of diameters ranging from 1 to 100 m for an entry velocity of 20 kms and stagnation pressures ranging from 1 to 100 atm; (ii) the influence of shape and departure of heating environment predictions from those for a simple spherical geometry; (iii) assessment of thermal response models for silica subject to intense radiation; and (iv) results for porosity-driven gross fragmentation of meteors, idealized as a collection of smaller objects. Lessons learned from these simulations will be used to help understand the Chelyabinsk meteor entry up to its first point of fragmentation
    corecore