2,633 research outputs found

    First Amendment -- Defamation -- Editorial Privilege: Herbert v. Lando

    Get PDF

    Antigenic variation in <i>Trypanosoma brucei</i>: joining the DOTs

    Get PDF
    African trypanosomes, such as &lt;i&gt;Trypanosoma brucei&lt;/i&gt;, are protistan parasites that cause sleeping sickness. Though first described more than a century ago, trypanosomes remain a blight on the health of the human population and on the economy of sub-Saharan Africa. &lt;i&gt;T. brucei&lt;/i&gt; replicates in the bloodstream of infected mammals and traverses the blood-brain barrier to enter the central nervous system in the late, frequently fatal, stages of the disease. Because of its extracellular lifestyle, &lt;i&gt;T. brucei&lt;/i&gt; is continuously exposed to antibody challenge. To circumvent this, the parasite uses antigenic variation of a surface protein named the variant surface glycoprotein (VSG). Around 107 VSG molecules are expressed on the parasite's cell surface, creating a dense coat that prevents adaptive immunity from detecting or accessing invariant antigens. However, antibodies against the expressed VSG are generated, and periodic switches to an immunologically distinct VSG coat are necessary for parasite survival. Such switches are pre-emptive of the immune response and contribute to the pattern of trypanosome growth seen in an infected host (Figure 1): parasite numbers increase, but then drop as VSG-specific antibodies are raised by the host. Cells that have switched to another VSG coat survive this killing and seed the outgrowth of a subsequent peak of parasites, which is again decimated by anti-VSG immune killing. As a survival strategy, antigenic variation succeeds by prolonging the time that the parasite

    Overlap subtype of chronic graft-versus-host disease is associated with an adverse prognosis, functional impairment, and inferior patient-reported outcomes: A Chronic Graft-versus-Host Disease Consortium study

    Get PDF
    Background The National Institutes of Health Consensus Conference proposed the term “overlap” graft-versus-host disease to describe the situation when both acute and chronic graft-versus-host disease are present. Design and Methods We examined whether the overlap subtype of graft-versus-host disease was associated with a different prognosis, functional limitations, or patient-reported outcomes compared to “classic” chronic graft-versus-host disease without any acute features. Results Prospective data were collected from 427 patients from nine centers. Patients were classified as having overlap (n=352) or classic chronic (n=75) graft-versus-host disease based on reported organ involvement. Overlap cases had a significantly shorter median time from transplantation to cohort enrollment (P=0.01), were more likely to be incident cases (P\u3c0.001), and had a lower platelet count at onset of the graft-versus-host disease (P\u3c0.001). Patients with overlap graft-versus-host disease had significantly greater functional impairment measured by a 2-minute walk test, higher symptom burden and lower Human Activity Profile scores. Quality of life was similar, except patients with overlap graft-versus-host disease had worse social functioning, assessed by the Short Form-36. Multivariable analysis utilizing time-varying covariates demonstrated that the overlap subtype of graft-versus-host disease was associated with worse overall survival (HR 2.1, 95% CI 1.1–4.7; P=0.03) and higher non-relapse mortality (HR 2.8, 95% CI 1.2–8.3; P=0.02) than classic chronic graft-versus-host disease. Conclusions These findings suggest that the presence of acute features in patients with chronic graft-versus-host disease is a marker of adverse prognosis, greater functional impairment, and higher symptom burden

    Milliarcsecond N-Band Observations of the Nova RS Ophiuchi: First Science with the Keck Interferometer Nuller

    Get PDF
    We report observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nuller (KIN), approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. These observations represent the first scientific results from the KIN, which operates in N-band from 8 to 12.5 microns in a nulling mode. By fitting the unique KIN data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0, or 5.4 mas for a disk profile, gaussian profile (FWHM), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission and atomic metals including silicon located in the inner spatial regime near the white dwarf (WD) relative to the outer regime. There are also nebular emission lines and evidence of hot silicate dust in the outer spatial region, centered at ! 17 AU from the WD, that are not found in the inner regime. Our evidence suggests that these features have been excited by the nova flash in the outer spatial regime before the blast wave reached these regions. These identifications support a model in which the dust appears to be present between outbursts and is not created during the outburst event. We further discuss the present results in terms of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. These data show the power and potential of the nulling technique which has been developed for the detection of Earth-like planets around nearby stars for the Terrestrial Planet Finder Mission and Darwin missions.Comment: 41 pages, 10 figure

    Obliquity-driven expansion of North Atlantic sea ice during the last glacial

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 10,382–10,390, doi:10.1002/2015GL066344.North Atlantic late Pleistocene climate (60,000 to 11,650 years ago) was characterized by abrupt and extreme millennial duration oscillations known as Dansgaard-Oeschger (D-O) events. However, during the Last Glacial Maximum (LGM) 23,000 to 19,000 cal years ago (23 to 19 ka), no D-O events are observed in the Greenland ice cores. Our new analysis of the Greenland δ18O record reveals a switch in the stability of the climate system around 30 ka, suggesting that a critical threshold was passed. Climate system modeling suggests that low axial obliquity at this time caused vastly expanded sea ice in the Labrador Sea, shifting Northern Hemisphere westerly winds south and reducing the strength of meridional overturning circulation. The results suggest that these feedbacks tipped the climate system into full glacial conditions, leading to maximum continental ice growth during the LGM.Australian Research Council2016-06-1

    Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison

    Get PDF
    Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ∼76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations
    corecore