323 research outputs found

    Mitochondrial bioenergetics is affected by the herbicide paraquat

    Get PDF
    AbstractThe potential toxicity of the herbicide paraquat (1,1-dimethyl-4,4′-bipyridylium dichloride) was tested in bioenergetic functions of isolated rat liver mitochondria. Paraquat increases the rate of State 4 respiration, doubling at 10 mM, indicating uncoupling effects. Additionally, State 3 respiration is depressed by about 15%, at 10 mM paraquat, whereas uncoupled respiration in the presence of CCCP is depressed by about 30%. Furthermore, paraquat partially inhibits the ATPase activity through a direct effect on this enzyme complex. However, at high concentrations (5–10 mM), the ATPase activity is stimulated, probably as consequence of the described uncoupling effect. Depression of respiratory activity is mediated through partial inhibitions of mitochondrial complexes III and IV. Paraquat depresses Δψ as a function of herbicide concentration. In addition, the depolarization induced by ADP is decreased and repolarization is biphasic suggesting a double effect. Repolarization resumes at a level consistently higher than the initial level before ADP addition, for paraquat concentrations up to 10 mM. This particular effect is clear at 1 mM paraquat and tends to fade out with increasing concentrations of the herbicide

    Dequalinium chloride effectively disrupts bacterial vaginosis (BV) Gardnerella spp. biofilms

    Get PDF
    Bacterial vaginosis (BV) is the most frequent vaginal infection worldwide. It is caused by the overgrowth of anaerobic vaginal pathogens such as Gardnerella spp. BV has been associated with the occurrence of dense multispecies biofilms on the vaginal mucosa. Treatment of biofilm-associated infections such as BV is challenging. In this study, we have tested the role of a quaternary ammonium compound, dequalinium chloride (DQC), in the eradication of Gardnerella spp. biofilms. The effects of the test substance on the biomass and the metabolic activity of the biofilm of Gardnerella spp. were assessed in vitro using a microtiter plate assay. In addition, the effect of DQC on the Gardnerella spp. biofilm was further assessed by using scanning electron microscopy and confocal laser scanning microscopy. The results showed that DQC was particularly effective in the destruction of BV-associated Gardnerella spp. biotypes, impacting both their biomass and metabolic activity. In addition, the disruption of biofilm architecture was evident and was probably caused by multiple mechanisms of action. We conclude that DQC is an antibiofilm agent and is able to efficiently destroy Gardnerella spp. BV-associated biofilms. Therefore, it is a valid option for BV therapy and has the potential to prevent BV recurrences.This work was supported by national funds from Fundação para a Ciência e Tecnologia (FCT), Portugal (Project UIDB/00709/2020), and by the European Regional Development Fund (ERDF), under the Portugal 2020 Program, through the Regional Operational Program of the Center (Centro2020), through the Project with the reference UIDB/00709/2020. C. Gaspar was supported by fellowship SFRH/BDE/112920/2015 from FCT; J. Rolo was supported by fellowship SFRH/BPD/115145/2016 from FCT. The human resources, consumables, and reagents, as well as publication charges, were partially funded by Medinova, Switzerland. All the results achieved are reported in this document (including negative results), and no member of Medinova interfered in the experimental design or discussion of results.info:eu-repo/semantics/publishedVersio

    In Vitro Anti-Candida Activity of Lidocaine and Nitroglycerin: Alone and Combined

    Get PDF
    The aim of this work was to study the anti-Candida activity of lidocaine and nitroglycerin alone and in combination. Ten Candida strains were included, corresponding to 1 collection type strain (ATCC 10231) and 9 clinical isolates: 4 C. albicans, 2 C. glabrata, 1 C. tropicalis, 1 C. krusei, and 1 C. parapsilosis. The CLSI reference M27-A3 micromethod was used to determine the anti-Candida activity of the drugs alone; minimal inhibitory and lethal concentrations were determined. The classic checkboard technique was used to determine the activity of combined drugs. Lidocaine fungicidal effect was dosedependent. Nitroglycerin exhibited a higher effect. The drugs combination resulted in a reduction of the inhibitory concentration, corresponding to an additive effect. In conclusion, both drugs exhibited an interesting anti-Candida activity. The combination of lidocaine with nitroglycerin was shown to have an additive effect against Candida spp., predicting the interest to include, in the future, these drugs in a new delivery system for the treatment of mucocutaneous candidosis

    Diabetic Cardiomyopathy: Focus on Oxidative Stress, Mitochondrial Dysfunction and Inflammation

    Get PDF
    Diabetic cardiomyopathy (DCM) is an independent clinical entity defined as structural and functional changes in the myocardium because of metabolic and cellular abnormalities induced by diabetes, resulting in cardiac failure. Hyperglycemia has been seen as a major cause of DCM due to activation of different mechanisms leading to oxidative stress. Several body of evidence show that distinct pathways of oxygen and nitrogen reactive species formation contribute to myocardial impairment. Abnormal mitochondrial morphology and energetics, evoked by abnormal Ca2+ handling, metabolic changes and oxidative stress, are observed in DCM, suggesting a pivotal role of mitochondrial dynamics in disease pathogenesis. In addition, insulin resistance compromises myocardial glucose uptake due to cellular depletion of glucose transporter proteins, together with increased myocardial uptake of free fatty acids and augmented triglyceride levels, which cause cardiomyocyte lipotoxicity. Finally, the state of chronic low-grade inflammation, a feature of obese type 2 diabetes, seems to also play a major role in DCM progression, whose mechanisms have been progressively disclosed. In this book chapter, we review the cellular mechanism contributing to DCM development, focusing on oxidative stress, mitochondrial dysfunction and inflammation of cardiomyocytes, as well as on possible therapeutic strategies

    Conteúdo de ADN no carcinoma da mama : Associação com variáveis clínico-patológicas

    Get PDF
    Dissertação de Mestrado em Oncologia apresentada ao Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Port

    Role of mitochondrial dysfunction in combined bile acid-induced cytotoxicity: the switch between apoptosis and necrosis

    Get PDF
    The goal of this investigation was to determine whether chenodeoxycholic acid (CDCA)-induced apoptosis is prevented by ursodeoxycholic acid (UDCA) or tauroursodeoxycholic acid (TUDC) and to characterize the involvement of mitochondria in the process. Cultured human HepG2 cells were treated in a dose- and time-dependent protocol in order to establish a sufficiently low exposure to CDCA that causes apoptosis but not necrosis. Low-dose CDCA induced an S-phase block and G2 arrest of the cell cycle, as determined by flow cytometry. As a result, cell proliferation was inhibited. CDCA-induced apoptosis, as determined by fluorescence microscopy of Hoechst 33342-stained nuclei, was evident upon coincubation with TUDC. Additionally, after exposure to UDCA plus CDCA, the cell membrane was permeable to fluorescent dyes. Caspase-9-like activity, poly(ADP-ribose) polymerase (PARP) cleavage, and extensive DNA fragmentation were detected in CDCA-exposed cells and in cells coincubated with TUDC, but not UDCA. CDCA caused a decrease in mitochondrial membrane potential and depletion of ATP, both of which were potentiated by UDCA but not TUDC. The results suggest that UDCA potentiates CDCA cytotoxicity, probably at the level of induction of the mitochondrial permeability transition (MPT). Consequently, as suggested by the lack of the main hallmarks of the apoptotic pathway, in the presence of UDCA, CDCA-induced apoptosis is not properly executed but degenerates into necrosis

    Decreased Susceptibility of Heart Mitochondria from Diabetic GK Rats to Mitochondrial Permeability Transition Induced by Calcium Phosphate

    Get PDF
    Type 2 diabetes (or non-insulin dependent diabetes mellitus, NIDDM) is a common metabolic disease in man. The Goto–Kakizaki (GK) rat has been designed as a NIDDM model. Previous studies with this strain have shown differences at the mitochondrial level. The mitochondrial permeability transition (MPT) is a widely studied phenomenon but yet poorly understood, that leads to mitochondrial dysfunction and cell death. The aim of this work was to compare the differences in susceptibility of induction of the MPT with calcium phosphate in GK and Wistar rats. Our results show that heart mitochondria from GK rats are less susceptible to the induction of MPT, and show a larger calcium accumulation before the overall loss of mitochondrial impermeability

    Worldwide Disseminated IncX4 Plasmid Carrying mcr-1 Arrives to Wild Mammal in Portugal

    Get PDF
    The mcr-1 gene spread is worldwide recognized as a public health threat at multidrug-resistant infections therapy level. Here, we report for the first time, to the best of our knowledge, the detection of the globally distributed IncX4 plasmid carrying mcr-1 (mcr-1/IncX4) in Escherichia coli isolated from a wild mammal in Portugal and Europe. This plasmid was found in a ST533 E. coli isolate with a multidrug-resistant profile, virulence potential, and possibly phylogenetically related to human isolates. Our work contributes to highlight the importance of antimicrobial resistance (AMR) surveillance in wildlife, an important compartment of the whole ecosystem often overlooked in the fight against AMR. IMPORTANCE Colistin resistance mediated by plasmids is recognized worldwide as an emergency problem connected with the whole ecosystem, since is well described in the interface of the human-animal-environment. The plasmid IncX4 is reported as one of the most prevalent plasmids harboring the gene mcr-1. On an European scale the plasmid IncX4 carrying mcr-1 has been described in humans, the environment, and animals, including wildlife, but only in wild birds. This study shows the first report of the plasmid IncX4 harboring mcr-1 in a wild mammal in Portugal and Europe, identified in a ST533 E. coli commensal that is, curiously, more related to isolates from humans than from livestock. Our findings show that the plasmid IncX4 harboring mcr-1 is well established in a colistin resistance drive embracing the whole ecosystem.info:eu-repo/semantics/publishedVersio

    Enhanced mitochondrial testicular antioxidant capacity in Goto-Kakizaki diabetic rats: role of coenzyme Q

    Get PDF
    Because diabetes mellitus is associated with impairment of testicular function, ultimately leading to reduced fertility, this study was conducted to evaluate the existence of a cause-effect relationship between increased oxidative stress in diabetes and reduced mitochondrial antioxidant capacity. The susceptibility to oxidative stress and antioxidant capacity (in terms of glutathione, coenzyme Q, and vitamin E content) of testis mitochondrial preparations isolated from Goto-Kakizaki (GK) non-insulin-dependent diabetic rats and from Wistar control rats, 1 yr of age, was evaluated. It was found that GK mitochondrial preparations showed a lower susceptibility to lipid peroxidation induced by ADP/Fe(2+), as evaluated by oxygen consumption and reactive oxygen species generation. The decreased susceptibility to oxidative stress in diabetic rats was associated with an increase in mitochondrial glutathione and coenzyme Q9 contents, whereas vitamin E was not changed. These results demonstrate a higher antioxidant capacity in diabetic GK rats. We suggest this is an adaptive response of testis mitochondria to the increased oxidative damage in diabetes mellitu

    A walk on the wild side: Wild ungulates as potential reservoirs of multi-drug resistant bacteria and genes, including Escherichia coli harbouring CTX-M beta-lactamases

    Get PDF
    Extended-spectrum β-lactamases (ESBL)-producing Enterobacterales have been classified as critical priority pathogens by the World Health Organization (WHO). ESBL are universally distributed and, in 2006, were firstly reported on a wild animal. Understanding the relative contributions of wild animals to ESBL circulation in the environment is urgently needed. In this work, we have conducted a nationwide study in Portugal to investigate the occurrence of bacteria carrying clinically significant antimicrobial resistance genes (ARG), using widely distributed wild ungulates as model species. A total of 151 antimicrobial resistant-Enterobacterales isolates were detected from 181 wild ungulates: 50% (44/88) of isolates from wild boar (Sus scrofa), 40.3% (25/62) from red deer (Cervus elaphus), 41.4% (12/29) from fallow deer (Dama dama) and 100% (2/2) from mouflon (Ovis aries subsp. musimon). Selected isolates showed a diversified resistance profile, with particularly high values corresponding to ampicillin (71.5%) and tetracycline (63.6%). Enterobacterales strains carried blaTEM, tetA, tetB, sul2, sul1 or dfrA1 ARG genes. They also carried blaCTX-M-type genes, which are prevalent in human infections, namely CTX-M-14, CTX-M-15 and CTX-M-98. Strikingly, this is the first report of CTX-M-98 in wildlife. Almost 40% (n = 59) of Enterobacterales were multi-drug resistant. The diversity of plasmids carried by ESBL isolates was remarkable, including IncF, K and P. This study highlights the potential role of wild ungulates as environmental reservoirs of CTX-M ESBL-producing E. coli and in the spill-over of AMR bacteria and their determinants. Our findings suggest that wild ungulates are useful as strategic sentinel species of AMR in terrestrial environments, especially in response to potential sources of anthropogenic pollution, providing early warning of potential risks to human, animal and environmental health.info:eu-repo/semantics/publishedVersio
    corecore