620 research outputs found

    PARTITION OF THE ORGANOCHLORINE INSECTICIDE LINDANE INTO THE HUMAN SPERM SURFACE INDUCES MEMBRANE DEPOLARIZATION AND CALCIUM INFLUX

    Get PDF
    The effects of the insecticide lindane (the gamma-isomer of 1,2,3,4,5,6-hexachlorocyclohexane) on membrane potential, cytosolic free Ca2+ concentration ([Ca2+]i) and surface biophysical properties were studied in human spermatozoa. The insecticide induces rapid, transient and reproducible membrane depolarization and opening of voltage-dependent Ca2+ channels leading to an increase in [Ca2+]i. In contrast with the effect in somatic cells, lindane did not affect gamma-aminobutyric acid receptor-linked Cl- currents. Ca2+ and K+ currents were found to drive lindane-induced membrane depolarization and repolarization respectively, whereas Na+ and Cl- fluxes appear not to have a role in the phenomenon. The insecticide was still able to produce membrane depolarization both in the combined absence of extracellular Ca2+ and Na+ and in high-K+ buffer, suggesting that lindane alters the membrane dipole potential. In agreement with this, Laurodan and Prodan fluorescence spectroscopy revealed that lindane partition into the sperm plasma membrane lowers water molecular dynamics in the uppermost region of the membrane external leaflet, probably as the result of reordering of water dipoles. We propose that the first effect of lindane partitioning into the sperm plasma membrane is a change in the membrane dipole potential, which results in the activation of membrane-located Ca2+-influx pathways

    A new sustainable and innovative work for paper artworks cleaning process: Gellan hydrogel combined with hydrolytic enzymes

    Get PDF
    Paper has been used as writing and drawing support for thousands of years. The conservation of paper artworks plays a fundamental role in the field of our cultural heritage. Moreover, restoration of paper artworks is difficult due to their inherent fragility, the presence of many components and their degradation state. Among the factors that may contribute to paper deterioration are the use of glue for the application of different materials (as a lining, mounting or as a repair intervention) on the paper artifact. During a natural ageing process, glue become yellow, acid and less compact, accelerating the degradation processes of the artwork itself. The removal of glues from paper artworks represents, therefore, an important procedure for their preservation. Here we present a sustainable alternative to the common removal systems (e.g. solvents or localized enzymatic packs on the support to be cleaned). For this goal we used a rigid Gellan hydrogel (totally removable in one step) containing hydrolytic enzyme, such as proteinase K. The enzyme works as a selective cleaning agent hydrolyzing animal glues into smaller fragments, soluble into the gel. Our system represents an effective alternative to the traditional techniques because it is easy to be prepared, eco-friendly and efficient

    Graph clustering and portable X-Ray Fluorescence: An application for in situ, fast and preliminary classification of transport amphoras

    Get PDF
    In the last decade, numerous papers have been delivered on the potential of portable X-Ray Fluorescence (XRF) in archaeological ceramics. Additionally, new chemometric methods have been proposed to manage chemical dataset and facilitate the use of geochemical discrimination for provenance classification of ancient ceramics. In this contribute, the potential of portable Energy Dispersive X-Ray Fluorescence (ED-XRF) analysis and chemical data processing by Graph Clustering is evaluated for provenance classification of archaeological potteries, discussing possible merits and limits of the employed routine. A ceramic assemblage represented by seventy-three transport amphorae classified by typological analysis have been used as testing materials; spectra have been collected on samples simulating in situ analysis conditions (e.g. on fresh cut surfaces without any preparation) and Graph Clustering method has been applied in chemical data processing; comparison with classical Cluster Analysis (CA) and Principal Component Analysis (PCA) is also evaluated. The obtained results favor the use of Graph Clustering for a preliminary classification of ceramics, which can be chemically analyzed in easy, fast and non-destructive way. With a 75.35% of correct attribution, the study shows the suitability of portable ED-XRF in rapid screening of a large number of ceramic samples usually recovered in the framework of archaeological excavation. Misclassifications have been mostly verified for samples exhibiting a coarse-grained clay paste, suggesting that the method is particularly suitable for fine-grained ceramic materials

    Shock waves in laser-induced plasmas

    Get PDF
    The production of a plasma by a pulsed laser beam in solids, liquids or gas is often associated with the generation of a strong shock wave, which can be studied and interpreted in the framework of the theory of strong explosion. In this review, we will briefly present a theoretical interpretation of the physical mechanisms of laser-generated shock waves. After that, we will discuss how the study of the dynamics of the laser-induced shock wave can be used for obtaining useful information about the laser-target interaction (for example, the energy delivered by the laser on the target material) or on the physical properties of the target itself (hardness). Finally, we will focus the discussion on how the laser-induced shock wave can be exploited in analytical applications of Laser-Induced Plasmas as, for example, in Double-Pulse Laser-Induced Breakdown Spectroscopy experiments

    Improvement of the performances of a commercial hand-held laser-induced breakdown spectroscopy instrument for steel analysis using multiple artificial neural networks.

    Get PDF
    In this article, we present a study on the optimization of the analytical performance of a commercial hand-held laser-induced breakdown spectroscopy instrument for steel analysis. We show how the performances of the instrument can be substantially improved using a non-linear calibration approach based on a set of Artificial Neural Networks (ANNs), one optimized for the determination of the major elements of the alloy, and the others specialized for the analysis of minor components. Tests of the instrument on steel samples used for instrument internal calibration demonstrate a comparable accuracy with the results of the ANNs, while the latter are considerably more accurate when unknown samples, not used for calibration/training, are tested

    A new approach to non-linear multivariate calibration in laser-induced breakdown spectroscopy analysis of silicate rocks

    Get PDF
    In this paper a new approach to quantitative Laser-Induced Breakdown Spectroscopy (LIBS) analysis of silicate rocks is presented. The method is adapted from the Franzini and Leoni algorithm, a method widely used in X-Ray Fluorescence analysis for correcting the matrix effects in the determination of the composition of geological materials. To illustrate the features of the new method proposed, nine elements were quantified in 19 geological standards by building linear univariate calibration curves, linear multivariate calibration surfaces (PLS) and using Artificial Neural Networks. The results were then compared with the predictions derived from the application of the algorithm here proposed. It was found that the Franzini and Leoni approach gives results much more precise than linear uni- and multivariate approaches, and comparable with the ones derived from the application of Artificial Neural Networks. A definite advantage of the proposed approach is the possibility of building multivariate non-linear calibration surfaces using linear optimization algorithms, a feature which makes the application of the Franzini and Leoni method in LIBS analysis much simpler (and controllable) with respect to the algorithms based on Artificial Neural Networks

    Application of double-pulse micro-LIBS 3D compositional mapping to the analysis of ceramics

    Get PDF
    We developed a new Laser-Induced Breakdown Spectroscopy (LIBS) instrument for 3D compositional mappings of archaeological objects. The system, based on the Modì double-pulse instrument, allows the reconstruction of maps with lateral resolution up to 20 microns and sub-micron depth resolution

    Pottery production and trades in Tamil Nadu region : new insights from Alagankulam and Keeladi excavation sites

    Get PDF
    This research is part of a wider scientific Italian-Indo project finalised to shed lights on pottery fabrication and trade circulation in Tamil Nadu region during Early Historical Period. The recent archaeological excavations carried out in Alagankulam—a famous harbour trading with the eastern and western world—and in Keeladi—the most ancient civilization centre attested in Tamil Nadu region—provided numerous fragments of archaeological ceramics. The typological analysis enabled the identification of different pottery classes, suggesting the presence of local productions, possible imports and imitations. Studied shards included common Indian vessels, fine wares and luxury ware repertoire. The provenance identification of some of the studied typologies is still debated in the literature; for long time, the misattribution of several ceramic classes has led to wrong interpretations on the commercial connections between India and the Western and Eastern Mediterranean area. The minero-petrographic and spectroscopic investigation of several ceramic fragments from the two investigated archaeological sites enabled the systematic compositional characterization of specific ceramic classes both locally manufactured and imported. The obtained results contributed to draw short-range and long-range connections in Tamil Nadu area

    Radiogenomics in clear cell renal cell carcinoma: correlations between advanced CT imaging (texture analysis) and microRNAs expression

    Get PDF
    Purpose: A relevant challenge for the improvement of clear cell renal cell carcinoma management could derive from the identification of novel molecular biomarkers that could greatly improve the diagnosis, prognosis, and treatment choice of these neoplasms. In this study, we investigate whether quantitative parameters obtained from computed tomography texture analysis may correlate with the expression of selected oncogenic microRNAs. Methods: In a retrospective single-center study, multiphasic computed tomography examination (with arterial, portal, and urographic phases) was performed on 20 patients with clear cell renal cell carcinoma and computed tomography texture analysis parameters such as entropy, kurtosis, skewness, mean, and standard deviation of pixel distribution were measured using multiple filter settings. These quantitative data were correlated with the expression of selected microRNAs (miR-21-5p, miR-210-3p, miR-185-5p, miR-221-3p, miR-145-5p). Both the evaluations (microRNAs and computed tomography texture analysis) were performed on matched tumor and normal corticomedullar tissues of the same patients cohort. Results: In this pilot study, we evidenced that computed tomography texture analysis has robust parameters (eg, entropy, mean, standard deviation) to distinguish normal from pathological tissues. Moreover, a higher coefficient of determination between entropy and miR-21-5p expression was evidenced in tumor versus normal tissue. Interestingly, entropy and miR-21-5p show promising correlation in clear cell renal cell carcinoma opening to a radiogenomic strategy to improve clear cell renal cell carcinoma management. Conclusion: In this pilot study, a promising correlation between microRNAs and computed tomography texture analysis has been found in clear cell renal cell carcinoma. A clear cell renal cell carcinoma can benefit from noninvasive evaluation of texture parameters in adjunction to biopsy results. In particular, a promising correlation between entropy and miR-21-5p was found
    • …
    corecore