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ABSTRACT
In this article, we present a study on the optimization of the analytical performance of a commercial hand-held laser-induced breakdown
spectroscopy instrument for steel analysis. We show how the performances of the instrument can be substantially improved using a non-
linear calibration approach based on a set of Artificial Neural Networks (ANNs), one optimized for the determination of the major elements
of the alloy, and the others specialized for the analysis of minor components. Tests of the instrument on steel samples used for instrument
internal calibration demonstrate a comparable accuracy with the results of the ANNs, while the latter are considerably more accurate when
unknown samples, not used for calibration/training, are tested.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012669., s

I. INTRODUCTION
The recent introduction of the hand-held laser-induced break-

down spectroscopy (HH-LIBS) instruments has been unanimously
seen by the community working in LIBS as a breakthrough toward
a larger diffusion of the technique in the fields where it works bet-
ter, i.e., industrial or, in general, out-of-the-lab applications.1 In fact,
the need for compacting in a hand-held instrument a power laser, a
wide-band spectrometer, a computer for the elaboration of the data,
and all the optics and electronics has forced the major producers of
these instruments to compromise on some things, which unavoid-
ably degrade the performance of these systems. Despite that, sev-
eral interesting results have been obtained in recent years on appli-
cations of hand-held LIBS instruments to geological materials,2–6

precise agriculture,7 metallurgy,8–11 industrial processes,12 nuclear
industry,13 and cultural heritage.2,14

It is commonly accepted that the intrinsic limitations of hand-
held LIBS instruments may be partially overcome using advanced
chemometric tools for the quantitative analysis of the spectra.5–7,15

On the other hand, the complexity of the analysis should be rea-
sonable for the LIBS data to be processed by the low computa-
tional power computers controlling these instruments. In this paper,
we will show how the optimization of the analytical procedure
may improve considerably the performances of a hand-held LIBS
instrument without introducing unreasonable loads on the internal
computer.

II. MATERIALS AND METHODS
The LIBS hand-held instrument used in this work is the EOS

500 HH-LIBS instruments by Bruker, Nano Inc., USA. The EOS 500

Rev. Sci. Instrum. 91, 073111 (2020); doi: 10.1063/5.0012669 91, 073111-1

Published under license by AIP Publishing

https://scitation.org/journal/rsi
https://doi.org/10.1063/5.0012669
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0012669
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0012669&domain=pdf&date_stamp=2020-July-24
https://doi.org/10.1063/5.0012669
https://orcid.org/0000-0002-6645-4924
https://orcid.org/0000-0002-6377-7656
mailto:vincenzo.palleschi@cnr.it
https://doi.org/10.1063/5.0012669


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

is a lightweight instrument (2.4 kg including battery); it uses a pro-
prietary Nd:YAG laser at 1064 nm with a repetition rate of 5 kHz, an
average power of around 100 mW, and a power density on the sam-
ple >1 GW/cm2. The multi-detector design covers the wavelength
range from 170 nm to 720 nm with a resolution of about 0.15 nm.
The spot of analysis (about 100 μm in diameter) is rastered across the
surface to avoid the formation of deep craters and increase the rep-
resentativity of the analysis. The sampled area in a measure is about
1 mm2.

The instrument tested was specifically calibrated at the factory
for the analysis of steel. A set of samples used for the instrument
calibration (32 certified steel samples) were made available to us by
Bruker (see Table I) so that the performances of the internal software
of the instrument could be easily compared with the ones based on a
different multivariate approach.

To study the possible improvement in the analytical per-
formances of the EOS 500 instrument (without intervening on
the hardware), we tested a solution based on the application of
simple Artificial Neural Networks (ANNs).16 The use of artificial

neural networks in LIBS analysis is now largely consolidated; after
the early works of Motto-Ros et al.,17–19 many papers using ANNs
for classification20–23 and quantification24,25 of LIBS spectra have
been published. Hybrid quantification methods have been also
proposed.26,27 The main advantage of the ANN approach with
respect to other uni- and multi-variate approaches is the capa-
bility of representing well the complex non-linear dependence
between the signal and sample composition, which is typical of LIBS
analysis.

The ANN algorithm links a set of inputs (in our case, the spec-
tral intensities of some lines in the LIBS spectrum) to a set of outputs
(in our case, the concentration of the elements of interest) through a
non-linear relation that can be determined by minimizing the devi-
ation between the predicted and nominal outputs on a set of known
samples. The relation obtained between inputs and outputs is then
used for obtaining the outputs associated with unknown samples
from the measured inputs.

The algorithms for building an ANN are powerful and robust,
and software packages are available, which make their application

TABLE I. Composition of the certified steel samples used for training the ANNs (all the concentrations are in wt. %).

Fe C Si Al V Mn Cu Ni Cr Mo

Iron 99.92 0.002 <0.1 0.002 1 × 10−3 1 × 10−3 0.004 0.004 0.001 0.002
c1018 98.24 0.2 0.21 0.003 0.006 0.69 0.25 0.1 0.15 0.03
c1117 97.87 0.2 0.15 0.002 0.003 1.13 0.17 0.08 0.17 0.01
c4140 96.6 0.43 0.27 0.0219 0.004 0.9 0.22 0.19 1.05 0.18
c4340 95.54 0.41 0.22 0.036 0.004 0.75 0.19 1.66 0.85 0.22
c4620 96.57 0.21 0.26 0.026 0.003 0.58 0.1 1.77 0.15 0.24
c6150 96.88 0.51 0.22 0.014 0.17 0.78 0.18 0.14 0.99 0.04
c8620 97.34 0.2 0.23 0.003 0.068 0.8 0.12 0.49 0.45 0.18
e52100 96.56 1.04 0.26 0.003 0.004 0.33 0.13 0.1 1.47 0.02
Cr1.25 96.77 0.12 0.61 0.001 0.02 0.52 0.08 0.09 1.23 0.49
Cr2.25 95.7 0.1 0.22 0.003 0.008 0.55 0.17 0.16 2.07 0.93
P5 94.04 0.133 0.25 0.004 0.012 0.46 0.13 0.1 4.27 0.46
P9 88.89 0.13 0.38 0.004 0.02 0.41 0.15 0.24 8.66 0.96
303 71.22 0.061 0.37 <0.001 0.048 1.6 0.4 8.11 17.18 0.36
304 71.28 0.057 0.56 <0.001 0.092 0.66 0.33 8.21 18.41 0.19
309 61.92 0.076 0.43 0.012 0.06 1.58 0.31 12.48 22.54 0.36
310 51.31 0.068 0.53 0.01 0.1 1.69 0.3 20.05 25.48 0.15
321 68.51 0.046 0.57 0.023 0.14 1.95 0.18 10.16 17.41 0.37
330 41.75 0.063 1.24 0.022 0.05 1.51 0.19 35.53 19 0.31
316 67.82 0.053 0.59 <0.001 0.09 1.61 0.4 10.29 16.75 2.1
347 69.16 0.057 0.77 0.017 0.06 1.48 0.1 9.93 17.41 0.17
410 86.5 0.14 0.29 0.002 0.05 0.54 0.07 0.39 11.84 0.07
416 85.29 0.12 0.53 0.002 0.04 0.8 0.13 0.4 12.18 0.12
430 81.74 0.042 0.51 <0.001 0.04 0.4 0.13 0.22 16.8 0.02
431 80.18 0.14 0.37 0.076 0.07 0.61 0.1 2.27 16.03 0.07
440C 80 1.09 0.41 <0.001 0.04 0.39 0.09 0.22 17.07 0.52
446 74.59 0.089 0.37 <0.001 0.045 0.46 0.06 0.31 23.84 0.05
TS O-6 96.09 1.39 1.02 0.011 0.005 0.89 0.05 0.11 0.13 0.25
TS A-6 94.47 0.68 0.25 0.009 0.007 2.15 0.09 0.14 1.04 1.05
TS S-5 95.15 0.58 1.92 0.017 0.22 0.8 0.25 0.23 0.29 0.41
TS S-1 94.12 0.49 0.94 0.011 0.16 0.48 0.08 0.3 1.31 0.16
TS M-2 80.38 0.86 0.39 0.027 1.86 0.31 0.14 0.2 4.25 5.08
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easy. The obvious disadvantage of the ANN approach is the need for
many representative samples to be used for the calibration and the
length of the training procedures. It should be stressed, however, that
the training of the ANN can be performed in the laboratory with the
help of fast computers, while the quantitative analysis of the acquired
spectra could be easily managed by the low computational power
computer of the hand-held instrument, using the parameters of the
ANN previously determined.

The 32 certified steel samples used for building the ANNs
used in this work were provided from ARMI MBH/LGC Standards,
Manchester, NH, USA, and were kindly given to us by Bruker (see
Table I).

We acquired 15 spectra per sample (480 spectra in total) for
training the neural network. A typical LIBS spectrum, acquired by
the EOS 500 HH-LIBS instrument, is shown in Fig. 1.

One of the most important strategies in multivariate analysis
is the reduction of the number of inputs (or predictors) for the
analysis. In the case of LIBS, one must often deal with thousands
of spectral data; this number must be reduced to avoid the prob-
lem of overfitting, i.e., the use of more variables than the degrees
of freedom of the multivariate model. The feature selection can be
obtained using several simplification techniques. The most obvious
is the manual selection of the spectral points corresponding to the
main emission lines of the elements to be determined24,28 or the use
of their integral or peak intensities,29 but it can be unpractical in
the presence of elements, as Fe in the steel, which emit hundreds
of lines in the spectral range considered. Alternatively, automated
methods such as Principal Component Analysis (PCA),30 Genetic
Algorithms (GAs),31 Forward Feature Selection (FFS),16 and other
similar techniques32,33 can be applied. In our case, the feature selec-
tion was done based on the ratio between the standard deviation and
the average of the spectra acquired on all the calibration standards.
We selected as inputs of the ANN, among the 3681 points of the LIBS
spectrum, only the spectral points whose relative standard deviation
with respect to the average of all the spectra acquired on the cali-
bration samples was higher than a given fraction T of the maximum
(T < 1), as described in the following equation:

FIG. 1. LIBS spectrum acquired with the EOS 500 (sample c1018).

FIG. 2. Feature selection for the ANN. The spectral inputs are chosen in correspon-
dence to the wavelengths for which the relative standard deviation with respect to
the average is larger than 15% (red line in the graph) of the maximum.

SD(I)
Mean(I) ≥ T ∗max( SD(I)

Mean(I)). (1)

In other words, we chose the spectral point that showed the largest
variability among the different samples, i.e., the most significant for
quantitative analysis and, eventually, classification of the samples.
The method is very quick, conceptually equivalent to PCA (the vari-
ables that explain the largest variance of the data are retained) and
has the further advantage to allow a quick “visual” check on the
lines that are included in the analysis as a function of the chosen
tbhreshold.

Setting empirically a threshold T = 0.15, we obtain a reduction
of about 90% of the spectral inputs (451) with respect to the total
number of points of the LIBS spectrum (3681) (see Fig. 2). A quick
a posteriori check confirmed that all the main emission lines of the
elements of interest were included among the inputs.

TABLE II. Composition of the certified steel samples used for testing the ANNs (all the
concentrations are in wt. %). We acquired three spectra per test sample (30 spectra
in total).

C Si Mn Cr Ni Mo Co

S1 0.092 0.46 0.74 12.35 12.55 <0.01 <0.01
S2 0.0103 0.374 0.686 14.727 6.124 0.0138 <0.01
S3 0.0345 0.463 0.722 11.888 12.85 0.0304 <0.01
S4 0.019 0.27 1.4 18.46 10.2 0.265 0.116
S5 0.086 0.57 0.791 25.39 20.05 <0.01 0.054
S6 0.066 0.405 1.38 17.31 9.24 0.092 0.053
S7 0.0141 0.48 1.311 17.84 10.2 2.776 0.0184
S8 0.143 1.41 1.7 17.96 8.9 <0.01 0.018
S9 0.05 0.21 0.89 14.14 5.66 1.59 0.22
S10 0.0201 0.537 1.745 16.811 10.72 2.111 0.0525
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The same spectral regions were selected for the analysis of the
test samples.

As discussed in Ref. 34, for the analysis of the major compo-
nents in the alloy (Cr and Ni, besides Fe) and an estimate of the
concentration of the minor elements, a ANN was built using ten
hidden neurons (corresponding to the number of the elements con-
sidered), with a sigmoid activation function. The ANN was built
and trained using the package included in Matlab® (ver. 2020a).
This ANN was not expected to perform well for the minor elements
(Mo, Mn, Si and C, in our case) because it was not specifically opti-
mized for the analysis of the low-concentration elements. In fact, the
ANN training algorithm tries to minimize the sum of the absolute
deviations with respect to the predicted values for all the elements
at the same time. Therefore, the relative errors are higher for the
elements at lower concentration. We then analyzed the minor com-
ponents in the alloy using separate ANNs, each one optimized for
refining the analysis of the corresponding element. These networks

had the same inputs as the first one, but only one output (in our case,
the concentration of the minor element) and only one neuron in the
hidden layer.

The results obtained by the ANN on the steel samples used for
instrument internal calibration (not shown here for brevity) for the
main elements showed a good agreement with the nominal results
and the results obtained using the EOS 500 HH-LIBS instrument,
which is not surprising since those samples were used both for the
internal calibration of the instrument and for the training of the
ANN.

For testing and comparing the performances of the ANN with
the built-in calibration of the Bruker instrument, as well as exclud-
ing the possible occurrence of overfitting, we used ten certified steel
samples, specially provided by BAM, Berlin for the proficiency test
organized in the occasion of the fifth International LIBS Conference
in Berlin, Germany (2008).35 The composition of the standards is
reported in Table II. The BAM standards were not used for training

FIG. 3. Comparison between the predicted concentration and nominal ones, for ANN (black squares) and EOS 500 internal calibration (open dots).
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the ANNs or for the internal calibration of the instrument; therefore,
the conditions were ideal for comparing our simple model with the
EOS 500 internal calibration algorithm.

The elements considered for the analysis were Cr, Ni, Mo, Mn,
Si, and C. The Co concentration was not determined because this
element was not present in the standards we used for training the
ANNs.

III. EXPERIMENTAL RESULTS
The comparison of the results obtained from the ten test sam-

ples with the ANN designed for the analysis of the major elements
is shown in Fig. (3). The points correspond to the average of the
three independent acquisitions, and the error bars represent the

corresponding standard deviations. In Fig. 3, the continuous line
represents the 1:1 correspondence between nominal and measured
concentrations for the given element.

In Table III, we report the slope of the best linear fit curves of
the experimental data for the elements in Fig. 3, the coefficient of
determination R2 of the fit, the Root Mean Standard Error (RMSE),
and the average bias b of the data, defined as

R2 = (∑i(yi − ȳ)(xi − x̄))2

∑i (yi − ȳ)2∑i (xi − x̄)2 ,

RMSE =
√
∑i (yi − Yi)2

N
,

b = ∑i(yi − Yi)
N

,

(2)

FIG. 4. Comparison between the predicted concentration and nominal ones, for the two specialized ANNs (Mo at the left and Mn at the right). The black line corresponds to
the 1:1 coincidence of the predicted and nominal concentrations. The red points in the Mn graph correspond to the prediction of the ANN for the main elements.

TABLE III. Comparison of the performances of ANN and internal EOS 500 calibration for the four elements considered.

ANN EOS 500

Slope R2 RMSE (wt. %) b (wt. %) Slope R2 RMSE (wt. %) b (wt. %)

Cr 1.00 0.999 0.70 0.2 0.913 0.999 1.83 −1.55
Ni 1.00 0.997 0.62 0.10 0.73 0.999 2.98 −2.75
Mo 0.984 0.973 0.19 0.06 0.967 0.992 0.11 −0.03
Mn 0.901 0.773 0.05 0.08 1.06 0.999 0.07 0.05

ANN 2

Slope R2 RMSE (wt. %) b (wt. %)

Mo 0.997 0.997 0.05 −0.11

ANN 3

Slope R2 RMSE (wt. %) b (wt. %)

Mn 1.01 0.933 0.1 −0.03
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where xi are the nominal concentration, yi are the estimated con-
centration, x̄ and ȳ are their averages, and N is the number of test
samples analyzed (N = 10 in our case).

From the analysis of the figures of merit reported in Table III, it
appears clearly that the ANN gives much better results (slope and
R2 close to 1, lower RMSE and average bias) than the EOS 500
internal calibration for Cr and Ni. As anticipated, the results for
the minor elements are comparable (Mo) or worse than the EOS
500 internal calibration (Mn). The results for C and Si were com-
parably poor/absent for both the main ANN and the EOS internal
calibration.

The results of the specialized ANNs for Mo and Mn are shown
in Table III and Fig. 4.

The predictions of the specialized ANNs are more precise than
the ones of the main ANN. This is clear but marginal for Mo, which
was already managed by the main ANN with a precision compa-
rable with the internal calibration of the EOS 500 instrument. The
improvement is more marked for manganese, although the scat-
ter of the data is still important. However, the analytical factors of
merit of the calibration are now comparable with that of the internal
calibration of the instrument.

Specialized ANNs were also built for Si and C. The quantifi-
cation of Si in steel is more problematic with respect to Mo and
Mn because in the LIBS spectrum only a few intense Si emission
lines can be observed, which are interfered by the emission lines of
the major elements Ni and Cr.36 Nevertheless, using the specialized
ANN, a quantitative determination of Si in the test samples can still
be obtained, as shown in Fig. 5.

The internal calibration of EOS 500 had a Limit of Detection
(LOD) for Si of 0.5 wt. %. The ANN predictions are slightly bet-
ter, but the indetermination on the results is quite large at those
concentrations.

The quantification of carbon in steel is even more complex: the
C I line at 247.86 nm, which is typically used for carbon quantifica-
tion, is covered by the neighboring Fe I and Fe II lines; however, the

FIG. 5. Comparison between the predicted concentration and nominal ones for the
Si specialized ANN. The black line corresponds to the 1:1 coincidence of predicted
and nominal concentrations.

FIG. 6. Comparison between the predicted concentration and nominal ones for the
C specialized ANN. The black line corresponds to the 1:1 coincidence of predicted
and nominal concentrations. The points in red correspond to the results obtained
on the test samples.

carbon information is still carried by the line at 193.09 nm, which
is free from interferences but lies in a spectral region, where the
sensitivity of the EOS 500 detector is very low.

In Fig. 6, the comparison is shown between the carbon con-
centration predicted by the corresponding specialized ANN and the
nominal concentration in the standards.

The specialized ANN provides a good quantitative determi-
nation of carbon concentration, at least for concentrations above
0.5 wt. %–1 wt. %. This is a good achievement, even compared to
benchtop LIBS instrumentation. It should also be considered that
the internal calibration of the EOS 500 was not able to give results
for carbon, on both the calibration standards and the test samples.
In our test steel samples, the nominal concentration of carbon is
lower than 0.15 wt. %, well below the limit of quantification of the
instrument, and the specialized ANN is just able to confirm that the
concentration is below 0.2 wt. % for all the samples.

It is worth to note again that, once properly trained, these
specialized neural networks would operate as quickly as the main
one, and the whole process of spectral analysis would require
a computational power perfectly compatible with a hand-held
device.

Given the limited number of standards used for training the
ANN (32) and considering that a single ANN was used for the deter-
mination of major elements in the samples, the authors feel that
the accuracy of the results obtained with the EOS 500 instrument
could be substantially improved by simply changing the internal
calibration method to an ANN-based algorithm.

IV. CONCLUSION
Hand-held LIBS instrumentation represents the future of LIBS

“real world” applications. However, the need for compactness,
lightweight, and robustness of HH-LIBS instruments might call
for compromises on the analytical performances of the equipment,
which should be compensated by a suitable analytical strategy. In
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this communication, we have shown that the choice of a proper cal-
ibration algorithm, guided by a sound chemical/physical model of
the system, allows us to reach better analytical performances with
respect to other more traditional methods; this is even more true,
considering that the results obtained were based on a calibration
exploiting only 32 certified steel samples.
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