90 research outputs found

    Oxidative stress and mitochondrial dysfunction in Kindler syndrome

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License.-- et al.[Background]: Kindler Syndrome (KS) is an autosomal recessive skin disorder characterized by skin blistering, photosensitivity, premature aging, and propensity to skin cancer. In spite of the knowledge underlying cause of this disease involving mutations of FERMT1 (fermitin family member 1), and efforts to characterize genotype-phenotype correlations, the clinical variability of this genodermatosis is still poorly understood. In addition, several pathognomonic features of KS, not related to skin fragility such as aging, inflammation and cancer predisposition have been strongly associated with oxidative stress. Alterations of the cellular redox status have not been previously studied in KS. Here we explored the role of oxidative stress in the pathogenesis of this rare cutaneous disease. [Methods]: Patient-derived keratinocytes and their respective controls were cultured and classified according to their different mutations by PCR and western blot, the oxidative stress biomarkers were analyzed by spectrophotometry and qPCR and additionally redox biosensors experiments were also performed. The mitochondrial structure and functionality were analyzed by confocal microscopy and electron microscopy.[Results]: Patient-derived keratinocytes showed altered levels of several oxidative stress biomarkers including MDA (malondialdehyde), GSSG/GSH ratio (oxidized and reduced glutathione) and GCL (gamma-glutamyl cysteine ligase) subunits. Electron microscopy analysis of both, KS skin biopsies and keratinocytes showed marked morphological mitochondrial abnormalities. Consistently, confocal microscopy studies of mitochondrial fluorescent probes confirmed the mitochondrial derangement. Imbalance of oxidative stress biomarkers together with abnormalities in the mitochondrial network and function are consistent with a pro-oxidant state. [Conclusions]: This is the first study to describe mitochondrial dysfunction and oxidative stress involvement in KS.FL was supported by grants from Instituto de Salud Carlos III (PI11/01225) and Comunidad de Madrid (S2010/BMD- 2359; SKINMODEL). MDR was supported by grants from the Science and Innovation Ministry of Spain SAF2010-16976), Comunidad de Madrid (S2010/BMD-2420; CELLCAM), GENEGRAFT - contract N° HEALTH-F2-2011-261392 and CIBERER ACCI 13-714/172.04. MG is supported in part by ERA-NET grant: E-Rare-2 (SpliceEB). EZ was in part supported by a fellowship from CIBERER and SAF2010-16976.Peer reviewe

    Extracellular histones disarrange vasoactive mediators reléase through COX-NOS interaction in human endothelial cells

    Get PDF
    Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone-mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 μg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose-dependent manner and decreased thromboxane A2 (TXA2) release at 100 μg/ml. Extracellular histones raised cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX-1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX-2 activity and superoxide production since was reversed after celecoxib (10 μmol/l) and tempol (100 μmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial-dependent mediators through an up-regulation in COX-2-PGIS-PGI2 pathway which involves a COX-2-dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone-mediated pathologies

    A Drosophila model of GDAP1 function reveals the involvement of insulin signalling in the mitochondria-dependent neuromuscular degeneration

    Full text link
    [EN] Charcot-Marie-Tooth disease is a rare peripheral neuropathy for which there is no specific treatment. Some forms of Charcot-Marie-Tooth are due to mutations in the GDAP1 gene. A striking feature of mutations in GDAP1 is that they have a variable clinical manifestation, according to disease onset and progression, histology and mode of inheritance. Studies in cellular and animal models have revealed a role of GDAP1 in mitochondrial morphology and distribution, calcium homeostasis and oxidative stress. To get a better understanding of the disease mechanism we have generated models of over-expression and RNA interference of the Drosophila Gdapl gene. In order to get an overview about the changes that Gdapl mutations cause in our disease model, we have combined a comprehensive determination of the metabolic profile in the flies by nuclear magnetic resonance spectroscopy with gene expression analyses and biophysical tests. Our results revealed that both up- and down-regulation of Gdapl results in an early systemic inactivation of the insulin pathway before the onset of neuromuscular degeneration, followed by an accumulation of carbohydrates and an increase in the (3-oxidation of lipids. Our findings are in line with emerging reports of energy metabolism impairments linked to different types of neural pathologies caused by defective mitochondrial function, which is not surprising given the central role of mitochondria in the control of energy metabolism. The relationship of mitochondrial dynamics with metabolism during neurodegeneration opens new avenues to understand the cause of the disease, and for the discovery of new biomarkers and treatments.This work was supported by a project grant from the Association Francaise contre les Myopathies [AFM 18540 to M.I.G]; a collaborative grant from International Rare Diseases Research consortium (IRDiRC) and Institute de Salud Carlos III [IR11/TREAT-CMT to M.I.G. (partner 12) and F.V.P. (partner 8)]; funding from Institute de Salud Carlos III through Biomedical Network Research Center for Rare Diseases and the INGENIO 2010 program to F.V.P.; and a project grant from the Spanish Government (Secretaria de Estado de Investigacion, Desarollo e Innovacion, Ministerio de Economia y Competitividad) [SAF2014-53977-R to A.P.].Lopez Del Amo, V.; Palomino-Schätzlein, M.; Seco-Cervera, M.; Garcia-Gimenez, JL.; Pallardó-Calatayud, FV.; Pineda-Lucena, A.; Galindo-Orozco, MI. (2017). A Drosophila model of GDAP1 function reveals the involvement of insulin signalling in the mitochondria-dependent neuromuscular degeneration. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1863(3):801-809. https://doi.org/10.1016/j.bbadis.2017.01.003S8018091863

    miR-1226 detection in GCF as potential biomarker of chronic periodontitis: a pilot study

    Get PDF
    The study and identification of new biomarkers for periodontal disease, such as microRNAs (miRNAs), may give us more information about the location and severity of the disease and will serve as a basis for treatment planning and disease-monitoring. miRNAs are a group of small RNAs which are involved in gene regulation by binding to their messenger RNA target (mRNA). In this pilot study, the procedure for purifying miRNAs from gingival crevicular fluid (GCF) was, for the first time, described. In addition, the concentration of miRNAs in GCF was analyzed and compared between patients with moderate or severe chronic periodontitis (CP) and healthy controls. GCF samples were collected from single-rooted teeth of patients with moderate or severe CP (n=9) and of healthy individuals (n=9). miRNAs were isolated from GCF using miRNeasy Serum/Plasma kit (Qiagen, CA. USA). Reverse transcription polymerase chain reaction (qRT-PCR) was used to determine the expression of a series of miRNAs candidates that are related to bone metabolism. The significance of differences in miRNA levels between both groups was determined using Mann-Whitney U test. The results from this pilot study indicate that miRNAs can be isolated from GCF. Six different miRNAs were analyzed (miR-671, miR-122, miR-1306, miR-27a, miR-223, miR-1226), but only miR-1226 showed statically significant differences between the CP group and healthy controls (p<0.05). This miRNA was downregulated in patients with CP. Within the limitations of the present study, it may be concluded that miR-1226 can be a promising biomarker for periodontal disease, adding relevant information to common clinical parameters used for diagnosis and prognosis of periodontitis

    Comparative Analysis of Chromatin-Delivered Biomarkers in the Monitoring of Sepsis and Septic Shock: A Pilot Study

    Full text link
    [EN] Sepsis management remains one of the most important challenges in modern clinical practice. Rapid progression from sepsis to septic shock is practically unpredictable, hence the critical need for sepsis biomarkers that can help clinicians in the management of patients to reduce the proba-bility of a fatal outcome. Circulating nucleoproteins released during the inflammatory response to infection, including neutrophil extracellular traps, nucleosomes, and histones, and nuclear pro-teins like HMGB1, have been proposed as markers of disease progression since they are related to inflammation, oxidative stress, endothelial damage, and impairment of the coagulation response, among other pathological features. The aim of this work was to evaluate the actual potential for decision making/outcome prediction of the most commonly proposed chromatin-related bi-omarkers (i.e., nucleosomes, citrullinated H3, and HMGB1). To do this, we compared different ELISA measuring methods for quantifying plasma nucleoproteins in a cohort of critically ill pa-tients diagnosed with sepsis or septic shock compared to nonseptic patients admitted to the inten-sive care unit (ICU), as well as to healthy subjects. Our results show that all studied biomarkers can be used to monitor sepsis progression, although they vary in their effectiveness to separate sepsis and septic shock patients. Our data suggest that HMGB1/citrullinated H3 determination in plasma is potentially the most promising clinical tool for the monitoring and stratification of septic patients.This activity received funding from the European Institute of Innovation and Technology (EIT). This body of the European Union receives support from the European Union's Horizon 2020 research and innovation program. C.R-M. thanks GVA for starting grant (GV/2018/127) and Spanish Ministry of Science and Innovation for research project (PID2020-119127RA-I00); J.B-G thanks ISCIII, AES2018 for iPFIS fellowship (IFI18/00015) and GVA for APOTI fellowship (APOTIP/2017/012); CG thanks Spanish Ministry of Universities for fellowship FPU18/03969; J.L.G-G and F.V.P thank INCLIVA, GVA and AES2016 and AES2019 (ISCIII) for starting grant (GV/2014/132), project PI16/01036 and PI19/00994 and project DTS17/00132 (co-financed by the ERDF). The project leading to these results has received funding from "la Caixa" Foundation (ID 100010434), under agreement CI18-0009. C.R-M., F.V.P. and A.M. thank Grand Challenges Canada. : We want to particularly acknowledge the patients and the INCLIVA Biobank (PT17/0015/0049; B.000768 ISCIII) integrated in the Valencian Biobanking Network and the Spanish National Biobanks Network for their collaboration.Beltrán-García, J.; Manclus Ciscar, JJ.; García-López, EM.; Carbonell, N.; Ferreres, J.; Rodríguez-Gimillo, M.; Garcés, C.... (2021). Comparative Analysis of Chromatin-Delivered Biomarkers in the Monitoring of Sepsis and Septic Shock: A Pilot Study. International Journal of Molecular Sciences. 22(18):1-15. https://doi.org/10.3390/ijms22189935115221
    corecore