17 research outputs found

    Inferring Mycobacterium bovis transmission between cattle and badgers using isolates from the Randomised Badger Culling Trial.

    Get PDF
    Mycobacterium bovis (M. bovis) is a causative agent of bovine tuberculosis, a significant source of morbidity and mortality in the global cattle industry. The Randomised Badger Culling Trial was a field experiment carried out between 1998 and 2005 in the South West of England. As part of this trial, M. bovis isolates were collected from contemporaneous and overlapping populations of badgers and cattle within ten defined trial areas. We combined whole genome sequences from 1,442 isolates with location and cattle movement data, identifying transmission clusters and inferred rates and routes of transmission of M. bovis. Most trial areas contained a single transmission cluster that had been established shortly before sampling, often contemporaneous with the expansion of bovine tuberculosis in the 1980s. The estimated rate of transmission from badger to cattle was approximately two times higher than from cattle to badger, and the rate of within-species transmission considerably exceeded these for both species. We identified long distance transmission events linked to cattle movement, recurrence of herd breakdown by infection within the same transmission clusters and superspreader events driven by cattle but not badgers. Overall, our data suggests that the transmission clusters in different parts of South West England that are still evident today were established by long-distance seeding events involving cattle movement, not by recrudescence from a long-established wildlife reservoir. Clusters are maintained primarily by within-species transmission, with less frequent spill-over both from badger to cattle and cattle to badger

    Phylodynamic analysis of an emergent Mycobacterium bovis outbreak in an area with no previously known wildlife infections

    Get PDF
    1. Understanding how an emergent pathogen successfully establishes itself and persists in a previously unaffected population is a crucial problem in disease ecology, with important implications for disease management. In multi-host pathogen systems this problem is particularly difficult, as the importance of each host species to transmission is often poorly characterised, and the disease epidemiology is complex. Opportunities to observe and analyse such emergent scenarios are few. 2. Here, we exploit a unique dataset combining densely-collected data on the epidemiological and evolutionary characteristics of an outbreak of Mycobacterium bovis (the causative agent of bovine tuberculosis, bTB) in a population of cattle and badgers in an area considered low-risk for bTB, with no previous record of either persistent infection in cattle, or of any infection in wildlife. We analyse the outbreak dynamics using a combination of mathematical modelling, Bayesian evolutionary analyses, and machine learning. 3. Comparison to M. bovis whole-genome sequences from Northern Ireland confirmed this to be a single introduction of the pathogen from the latter region, with evolutionary analysis supporting an introduction directly into the local cattle population six years prior to its first discovery in badgers. 4. Once introduced, the evidence supports M. bovis epidemiological dynamics passing through two phases, the first dominated by cattle-to-cattle transmission before becoming established in the local badger population. 5. Synthesis and applications. The raw data object of this analysis were used to support decisions regarding the control of a M. bovis emergent outbreak, of considerable concern because of the geographical distance from previously known high-risk areas. Our further analyses, estimating the time of introduction (and therefore the likely magnitude of any hidden outbreak) and the rates of cross-species transmission, provided valuable confirmation that the extent and focus of the imposed controls were appropriate. Not only these findings strengthen the call for genomic surveillance, but they also pave the path for future outbreaks control, providing insights for more rapid and decisive evidence-based decision-making. As the methods we used and developed are agnostic to the disease itself, they are also valuable for other slowly transmitting pathogens

    Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae)

    Get PDF
    The understanding of Earth’s biodiversity depends critically on the accurate identification and nomenclature of species. Many species were described centuries ago, and in a surprising number of cases their nomenclature or type material remain unclear or inconsistent. A prime example is provided by Elephas maximus, one of the most iconic and well-known mammalian species, described and named by Linnaeus (1758) and today designating the Asian elephant. We used morphological, ancient DNA (aDNA), and high-throughput ancient proteomic analyses to demonstrate that a widely discussed syntype specimen of E. maximus, a complete foetus preserved in ethanol, is actually an African elephant, genus Loxodonta. We further discovered that an additional E. maximus syntype, mentioned in a description by John Ray (1693) cited by Linnaeus, has been preserved as an almost complete skeleton at the Natural History Museum of the University of Florence. Having confirmed its identity as an Asian elephant through both morphological and ancient DNA analyses, we designate this specimen as the lectotype of E. maximus

    Population structure and transmission of Mycobacterium bovis in Ethiopia

    Get PDF
    Bovine tuberculosis (bTB) is endemic in cattle in Ethiopia, a country that hosts the largest national cattle herd in Africa. The intensive dairy sector, most of which is peri-urban, has the highest prevalence of disease. Previous studies in Ethiopia have demonstrated that the main cause is Mycobacterium bovis , which has been investigated using conventional molecular tools including deletion typing, spoligotyping and Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR). Here we use whole-genome sequencing to examine the population structure of M. bovis in Ethiopia. A total of 134 M . bovis isolates were sequenced including 128 genomes from 85 mainly dairy cattle and six genomes isolated from humans, originating from 12 study sites across Ethiopia. These genomes provided a good representation of the previously described population structure of M. bovis , based on spoligotyping and demonstrated that the population is dominated by the clonal complexes African 2 (Af2) and European 3 (Eu3). A range of within-host diversity was observed amongst the isolates and evidence was found for both short- and long-distance transmission. Detailed analysis of available genomes from the Eu3 clonal complex combined with previously published genomes revealed two distinct introductions of this clonal complex into Ethiopia between 1950 and 1987, likely from Europe. This work is important to help better understand bTB transmission in cattle in Ethiopia and can potentially inform national strategies for bTB control in Ethiopia and beyond

    A comprehensive genomic history of extinct and living elephants

    No full text
    Elephantids are the world\u27s most iconic megafaunal family, yet there is no comprehensive genomic assessment of their relationships. We report a total of 14 genomes, including 2 from the American mastodon, which is an extinct elephantid relative, and 12 spanning all three extant and three extinct elephantid species including an approximately 120,000-y-old straight-tusked elephant, a Columbian mammoth, and woolly mammoths. Earlier genetic studies modeled elephantid evolution via simple bifurcating trees, but here we show that interspecies hybridization has been a recurrent feature of elephantid evolution. We found that the genetic makeup of the straight-tusked elephant, previously placed as a sister group to African forest elephants based on lower coverage data, in fact comprises three major components. Most of the straight-tusked elephant\u27s ancestry derives from a lineage related to the ancestor of African elephants while its remaining ancestry consists of a large contribution from a lineage related to forest elephants and another related to mammoths. Columbian and woolly mammoths also showed evidence of interbreeding, likely following a latitudinal cline across North America. While hybridization events have shaped elephantid history in profound ways, isolation also appears to have played an important role. Our data reveal nearly complete isolation between the ancestors of the African forest and savanna elephants for approximately 500,000 y, providing compelling justification for the conservation of forest and savanna elephants as separate species

    Back to BaySICS: A User-Friendly Program for Bayesian Statistical Inference from Coalescent Simulations

    No full text
    <div><p>Inference of population demographic history has vastly improved in recent years due to a number of technological and theoretical advances including the use of ancient DNA. Approximate Bayesian computation (ABC) stands among the most promising methods due to its simple theoretical fundament and exceptional flexibility. However, limited availability of user-friendly programs that perform ABC analysis renders it difficult to implement, and hence programming skills are frequently required. In addition, there is limited availability of programs able to deal with heterochronous data. Here we present the software BaySICS: Bayesian Statistical Inference of Coalescent Simulations. BaySICS provides an integrated and user-friendly platform that performs ABC analyses by means of coalescent simulations from DNA sequence data. It estimates historical demographic population parameters and performs hypothesis testing by means of Bayes factors obtained from model comparisons. Although providing specific features that improve inference from datasets with heterochronous data, BaySICS also has several capabilities making it a suitable tool for analysing contemporary genetic datasets. Those capabilities include joint analysis of independent tables, a graphical interface and the implementation of Markov-chain Monte Carlo without likelihoods.</p></div

    Simulated examples employed for the performance assessment analysis.

    No full text
    <p>They were termed simulated example 1(A), simulated example 2 (B) and simulated example 3(C) in the text. A) The first scenario consists of a single change in population size; B) the second scenario consists of a bottleneck followed by population recovery; and C) the third scenario represents a population structure with three populations. The sampling consisted of 51 contemporary haploid individuals in (A); three samples of 17 haploid individuals each, which were taken at present, 15 000 and 35 000 generations before present, in (B); and three samples of 17 haploid individuals each, taken at present, 2 500 and 5 000 generations before present, in (C). The mutation rate was set to 0.15/nucleotide site/10<sup>6</sup>y, the transition/transversion bias was 0.875 and the gamma shape parameter was 0.15. The DNA sequences were l 000 bp long. Boxes show the parameters and prior densities which they were sampled from (<i>U</i>(<i>a</i>,<i>b</i>) means uniform distribution in the interval <i>a</i> to <i>b</i>).</p

    Comparison of different standardization factors for the summary statistics.

    No full text
    <p>The charts at left show the probability distribution of four hypothetical summary statistics (before applying any rejection or adjustment) that were chosen to show the properties of six normalizing factors corresponding to the columns in the table at the right. For each summary statistic, three values (<i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, and <i>x</i><sub>3</sub>) were used to calculate the distances between them and the observed value and then to adjust those distances by the different normalizing factors. The three points, <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, and <i>x</i><sub>3</sub>, were chosen to coincide with the quantiles of 2.5%, 50% (the median) and 97.5% respectively of the distributions of the summary statistics, in order to induce the behaviour of the gross of the simulated values. The table shows the values of <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, and <i>x</i><sub>3</sub> when standardized by the different normalizing factors and the bars below illustrate the proportional contribution of each summary statistic (identified by colour) to the overall composite Euclidean distance that would result if those summary statistics corresponded to the ones used for performing an hypothetical ABC analysis.</p
    corecore