21 research outputs found

    Matrix Equation Techniques for Certain Evolutionary Partial Differential Equations

    No full text
    We show that the discrete operator stemming from time-space discretization of evolutionary partial differential equations can be represented in terms of a single Sylvester matrix equation. A novel solution strategy that combines projection techniques with the full exploitation of the entry-wise structure of the involved coefficient matrices is proposed. The resulting scheme is able to efficiently solve problems with a tremendous number of degrees of freedom while maintaining a low storage demand as illustrated in several numerical examples

    Optimality Properties of Galerkin and Petrov-Galerkin Methods for Linear Matrix Equations

    Get PDF
    none2siGalerkin and Petrov–Galerkin methods are some of the most successful solution procedures in numerical analysis. Their popularity is mainly due to the optimality properties of their approximate solution. We show that these features carry over to the (Petrov-) Galerkin methods applied for the solution of linear matrix equations. Some novel considerations about the use of Galerkin and Petrov–Galerkin schemes in the numerical treatment of general linear matrix equations are expounded and the use of constrained minimization techniques in the Petrov–Galerkin framework is proposed.nonePalitta D.; Simoncini V.Palitta D.; Simoncini V

    An Efficient, Memory-Saving Approach for the Loewner Framework

    Get PDF
    The Loewner framework is one of the most successful data-driven model order reduction techniques. If N is the cardinality of a given data set, the so-called Loewner and shifted Loewner matrices [Formula: see text] and [Formula: see text] can be defined by solely relying on information encoded in the considered data set and they play a crucial role in the computation of the sought rational model approximation.In particular, the singular value decomposition of a linear combination of [Formula: see text] and [Formula: see text] provides the tools needed to construct accurate models which fulfill important approximation properties with respect to the original data set. However, for highly-sampled data sets, the dense nature of [Formula: see text] and [Formula: see text] leads to numerical difficulties, namely the failure to allocate these matrices in certain memory-limited environments or excessive computational costs. Even though they do not possess any sparsity pattern, the Loewner and shifted Loewner matrices are extremely structured and, in this paper, we show how to fully exploit their Cauchy-like structure to reduce the cost of computing accurate rational models while avoiding the explicit allocation of [Formula: see text] and [Formula: see text] . In particular, the use of the hierarchically semiseparable format allows us to remarkably lower both the computational cost and the memory requirements of the Loewner framework obtaining a novel scheme whose costs scale with [Formula: see text]

    On the Convergence of Krylov Methods with Low-Rank Truncations

    No full text

    The Short-term Rational Lanczos Method and Applications

    Get PDF

    On an integrated Krylov-ADI solver for large-scale Lyapunov equations

    Get PDF
    One of the most computationally expensive steps of the low-rank ADI method for large-scale Lyapunov equations is the solution of a shifted linear system at each iteration. We propose the use of the extended Krylov subspace method for this task. In particular, we illustrate how a single approximation space can be constructed to solve all the shifted linear systems needed to achieve a prescribed accuracy in terms of Lyapunov residual norm. Moreover, we show how to fully merge the two iterative procedures in order to obtain a novel, efcient implementation of the low-rank ADI method, for an important class of equations. Many state-of-the-art algorithms for the shift computation can be easily incorporated into our new scheme, as well. Several numerical results illustrate the potential of our novel procedure when compared to an implementation of the low-rank ADI method based on sparse direct solvers for the shifted linear systems

    On an integrated Krylov-ADI Solver for Large-Scale Lyapunov Equations

    Get PDF

    Compress-and-Restart Block Krylov Subspace Methods for Sylvester Matrix Equations

    No full text
    Block Krylov subspace methods (KSMs) comprise building blocks in many state-of-the-art solvers for large-scale matrix equations as they arise, for example, from the discretization of partial differential equations. While extended and rational block Krylov subspace methods provide a major reduction in iteration counts over polynomial block KSMs, they also require reliable solvers for the coefficient matrices, and these solvers are often iterative methods themselves. It is not hard to devise scenarios in which the available memory, and consequently the dimension of the Krylov subspace, is limited. In such scenarios for linear systems and eigenvalue problems, restarting is a well-explored technique for mitigating memory constraints. In this work, such restarting techniques are applied to polynomial KSMs for matrix equations with a compression step to control the growing rank of the residual. An error analysis is also performed, leading to heuristics for dynamically adjusting the basis size in each restart cycle. A panel of numerical experiments demonstrates the effectiveness of the new method with respect to extended block KSMs

    Matrix Oriented Reduction of Space-Time Petrov-Galerkin Variational Problems

    Get PDF

    An ultraweak space-Time variational formulation for the wave equation: Analysis and efficient numerical solution

    Get PDF
    We introduce an ultraweak space-time variational formulation for the wave equation, prove its well-posedness (even in the case of minimal regularity) and optimal inf-sup stability. Then, we introduce a tensor product-style space-time Petrov–Galerkin discretization with optimal discrete inf-sup stability, obtained by a non-standard definition of the trial space. As a consequence, the numerical approximation error is equal to the residual, which is particularly useful for a posteriori error estimation. For the arising discrete linear systems in space and time, we introduce efficient numerical solvers that appropriately exploit the equation structure, either at the preconditioning level or in the approximation phase by using a tailored Galerkin projection. This Galerkin method shows competitive behavior concerning wall-clock time, accuracy and memory as compared with a standard time-stepping method in particular in low regularity cases. Numerical experiments with a 3D (in space) wave equation illustrate our findings
    corecore