85 research outputs found

    The research of antibacterial properties of decamethoxin, decasan, horosten

    Get PDF
    The study of Staphylococcus resistance to the antibacterial drugs Decamethoxin, Decasan, Horosten remains an important medical problem. The aim of this study was to investigate the antistaphylococcal properties of Decamethoxin, Decasan, Horosten. It has been proven that qaterinary ammonium antiseptic drugs (Decamethoxin, Decasan, Horosten) have high antistaphylococcal properties. The bactericidal activity of Decamethoxin has been shown to be stable under adverse pH conditions of different microbial loading. Different concentrations of Decamethoxine have been shown to cause the formation of resistant variants of Staphylococcus, which lose the ability to form pigments and enzymes

    Genome-wide Analysis of Simultaneous GATA1/2, RUNX1, FLI1, and SCL Binding in Megakaryocytes Identifies Hematopoietic Regulators

    Get PDF
    SummaryHematopoietic differentiation critically depends on combinations of transcriptional regulators controlling the development of individual lineages. Here, we report the genome-wide binding sites for the five key hematopoietic transcription factors—GATA1, GATA2, RUNX1, FLI1, and TAL1/SCL—in primary human megakaryocytes. Statistical analysis of the 17,263 regions bound by at least one factor demonstrated that simultaneous binding by all five factors was the most enriched pattern and often occurred near known hematopoietic regulators. Eight genes not previously appreciated to function in hematopoiesis that were bound by all five factors were shown to be essential for thrombocyte and/or erythroid development in zebrafish. Moreover, one of these genes encoding the PDZK1IP1 protein shared transcriptional enhancer elements with the blood stem cell regulator TAL1/SCL. Multifactor ChIP-Seq analysis in primary human cells coupled with a high-throughput in vivo perturbation screen therefore offers a powerful strategy to identify essential regulators of complex mammalian differentiation processes

    Integrative Analysis of Epigenetic Modulation in Melanoma Cell Response to Decitabine: Clinical Implications

    Get PDF
    Decitabine, an epigenetic modifier that reactivates genes otherwise suppressed by DNA promoter methylation, is effective for some, but not all cancer patients, especially those with solid tumors. It is commonly recognized that to overcome resistance and improve outcome, treatment should be guided by tumor biology, which includes genotype, epigenotype, and gene expression profile. We therefore took an integrative approach to better understand melanoma cell response to clinically relevant dose of decitabine and identify complementary targets for combined therapy. We employed eight different melanoma cell strains, determined their growth, apoptotic and DNA damage responses to increasing doses of decitabine, and chose a low, clinically relevant drug dose to perform whole-genome differential gene expression, bioinformatic analysis, and protein validation studies. The data ruled out the DNA damage response, demonstrated the involvement of p21Cip1 in a p53-independent manner, identified the TGFβ pathway genes CLU and TGFBI as markers of sensitivity to decitabine and revealed an effect on histone modification as part of decitabine-induced gene expression. Mutation analysis and knockdown by siRNA implicated activated β-catenin/MITF, but not BRAF, NRAS or PTEN mutations as a source for resistance. The importance of protein stability predicted from the results was validated by the synergistic effect of Bortezomib, a proteasome inhibitor, in enhancing the growth arrest of decitabine in otherwise resistant melanoma cells. Our integrative analysis show that improved therapy can be achieved by comprehensive analysis of cancer cells, identified biomarkers for patient's selection and monitoring response, as well as targets for improved combination therapy

    The significance of epigenetic alterations in lung carcinogenesis

    Full text link
    • …
    corecore