110 research outputs found
Flexible Analytical Methods for Adding a Treatment Arm Mid-Study to an Ongoing Clinical Trial
It is not uncommon to have experimental drugs under different stages of development for a given disease area. Methods are proposed for use when another treatment arm is to be added mid-study to an ongoing clinical trial. Monte Carlo simulation was used to compare potential analytical approaches for pairwise comparisons through a difference in means in independent normal populations including 1.) a linear model adjusting for the design change (stage effect), 2.) pooling data across the stages, or 3.) the use of an adaptive combination test. In the presence of intra-stage correlation (or a non-ignorable fixed stage effect), simply pooling the data will result in a loss of power and will inflate the type I error rate. The linear model approach is more powerful, but the adaptive methods allow for flexibility (re-estimating sample size). The flexibility to add a treatment arm to an ongoing trial may result in cost savings as treatments that become ready for testing can be added to ongoing studies
Clopidogrel and Aspirin in Acute Ischemic Stroke and High-Risk TIA.
BACKGROUND—Combination antiplatelet therapy with clopidogrel and aspirin may reduce the rate of recurrent stroke during the first 3 months after a minor ischemic stroke or transient ischemic attack (TIA). A trial of combination antiplatelet therapy in a Chinese population has shown a reduction in the risk of recurrent stroke. We tested this combination in an international population. METHODS—In a randomized trial, we assigned patients with minor ischemic stroke or high-risk TIA to receive either clopidogrel at a loading dose of 600 mg on day 1, followed by 75 mg per day, plus aspirin (at a dose of 50 to 325 mg per day) or the same range of doses of aspirin alone. The dose of aspirin in each group was selected by the site investigator. The primary efficacy outcome in a time-to-event analysis was the risk of a composite of major ischemic events, which was defined as ischemic stroke, myocardial infarction, or death from an ischemic vascular event, at 90 days. RESULTS—A total of 4881 patients were enrolled at 269 international sites. The trial was halted after 84% of the anticipated number of patients had been enrolled because the data and safety monitoring board had determined that the combination of clopidogrel and aspirin was associated with both a lower risk of major ischemic events and a higher risk of major hemorrhage than aspirin alone at 90 days. Major ischemic events occurred in 121 of 2432 patients (5.0%) receiving clopidogrel plus aspirin and in 160 of 2449 patients (6.5%) receiving aspirin plus placebo (hazard ratio, 0.75; 95% confidence interval [CI], 0.59 to 0.95; P = 0.02), with most events occurring during the first week after the initial event. Major hemorrhage occurred in 23 patients (0.9%) receiving clopidogrel plus aspirin and in 10 patients (0.4%) receiving aspirin plus placebo (hazard ratio, 2.32; 95% CI, 1.10 to 4.87; P = 0.02). CONCLUSIONS—In patients with minor ischemic stroke or high-risk TIA, those who received a combination of clopidogrel and aspirin had a lower risk of major ischemic events but a higher risk of major hemorrhage at 90 days than those who received aspirin alone. (Funded by the National Institute of Neurological Disorders and Stroke; POINT ClinicalTrials.gov number, NCT00991029.
Albumin Administration in Acute Ischemic Stroke: Safety Analysis of the ALIAS Part 2 Multicenter Trial
BACKGROUND: Albumin treatment of ischemic stroke was associated with cardiopulmonary adverse events in previous studies and a low incidence of intracranial hemorrhage. We sought to describe the neurological and cardiopulmonary adverse events in the ALIAS Part 2 Multicenter Trial.
METHODS: Ischemic stroke patients, aged 18-83 and a baseline NIHSS ≥ 6, were randomized to treatment with ALB or saline control within 5 hours of stroke onset. Neurological adverse events included symptomatic intracranial hemorrhage, hemicraniectomy, neurological deterioration and neurological death. Cardiopulmonary adverse events included pulmonary edema/congestive heart failure, acute coronary syndromes, atrial fibrillation, pneumonia and pulmonary thromboembolism.
RESULTS: Among 830 patients, neurological and cardiopulmonary adverse events were not differentially associated with poor outcome between ALB and saline control subjects. The rate of symptomatic intracranial hemorrhage in the first 24h was low overall (2.9%, 24/830) but more common in the ALB treated subjects (RR = 2.4, CI95 1.01-5.8). The rate of pulmonary edema/CHF in the first 48h was 7.9% (59/830) and was more common among ALB treated subjects (RR = 10.7, CI95 4.3-26.6); this complication was expected and was satisfactorily managed with mandated diuretic administration and intravenous fluid guidelines. Troponin elevations in the first 48h were common, occurring without ECG change or cardiac symptoms in 52 subjects (12.5%).
CONCLUSIONS: ALB therapy was associated with an increase in symptomatic ICH and pulmonary edema/congestive heart failure but this did not affect final outcomes. Troponin elevation occurs routinely in the first 48 hours after acute ischemic stroke.
TRIAL REGISTRATION: ClincalTrials.gov NCT00235495
Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke
Background
Recurrent stroke is a frequent, disabling event after ischemic stroke. This study compared
the efficacy and safety of two antiplatelet regimens — aspirin plus extendedrelease
dipyridamole (ASA–ERDP) versus clopidogrel.
Methods
In this double-blind, 2-by-2 factorial trial, we randomly assigned patients to receive
25 mg of aspirin plus 200 mg of extended-release dipyridamole twice daily or to receive
75 mg of clopidogrel daily. The primary outcome was first recurrence of stroke.
The secondary outcome was a composite of stroke, myocardial infarction, or death
from vascular causes. Sequential statistical testing of noninferiority (margin of 1.075),
followed by superiority testing, was planned.
Results
A total of 20,332 patients were followed for a mean of 2.5 years. Recurrent stroke
occurred in 916 patients (9.0%) receiving ASA–ERDP and in 898 patients (8.8%) receiving
clopidogrel (hazard ratio, 1.01; 95% confidence interval [CI], 0.92 to 1.11). The
secondary outcome occurred in 1333 patients (13.1%) in each group (hazard ratio for
ASA–ERDP, 0.99; 95% CI, 0.92 to 1.07). There were more major hemorrhagic events
among ASA–ERDP recipients (419 [4.1%]) than among clopidogrel recipients (365
[3.6%]) (hazard ratio, 1.15; 95% CI, 1.00 to 1.32), including intracranial hemorrhage
(hazard ratio, 1.42; 95% CI, 1.11 to 1.83). The net risk of recurrent stroke or major
hemorrhagic event was similar in the two groups (1194 ASA–ERDP recipients [11.7%],
vs. 1156 clopidogrel recipients [11.4%]; hazard ratio, 1.03; 95% CI, 0.95 to 1.11).
Conclusions
The trial did not meet the predefined criteria for noninferiority but showed similar rates
of recurrent stroke with ASA–ERDP and with clopidogrel. There is no evidence that either
of the two treatments was superior to the other in the prevention of recurrent
stroke. (ClinicalTrials.gov number, NCT00153062.
Regulation of Cathepsin G Reduces the Activation of Proinsulin-Reactive T Cells from Type 1 Diabetes Patients
Autoantigenic peptides resulting from self-proteins such as proinsulin are important players in the development of type 1 diabetes mellitus (T1D). Self-proteins can be processed by cathepsins (Cats) within endocytic compartments and loaded to major histocompatibility complex (MHC) class II molecules for CD4+ T cell inspection. However, the processing and presentation of proinsulin by antigen-presenting cells (APC) in humans is only partially understood. Here we demonstrate that the processing of proinsulin by B cell or myeloid dendritic cell (mDC1)-derived lysosomal cathepsins resulted in several proinsulin-derived intermediates. These intermediates were similar to those obtained using purified CatG and, to a lesser extent, CatD, S, and V in vitro. Some of these intermediates polarized T cell activation in peripheral blood mononuclear cells (PBMC) from T1D patients indicative for naturally processed T cell epitopes. Furthermore, CatG activity was found to be elevated in PBMC from T1D patients and abrogation of CatG activity resulted in functional inhibition of proinsulin-reactive T cells. Our data suggested the notion that CatG plays a critical role in proinsulin processing and is important in the activation process of diabetogenic T cells
National Institutes of Health Stroke Scale An Alternative Primary Outcome Measure for Trials of Acute Treatment for Ischemic Stroke
Background and Purpose- The modified Rankin Scale (mRS) at 3 months is the most commonly used primary outcome measure in stroke treatment trials, but it lacks specificity and requires long-term follow-up interviews, which consume time and resources. An alternative may be the National Institutes of Health Stroke Scale (NIHSS), early after stroke. Our aim was to evaluate whether the NIHSS assessed within 1 week after treatment could serve as a primary outcome measure for trials of acute treatment for ischemic stroke. Methods- We used data from 2 randomized controlled trials of endovascular treatment for ischemic stroke: the positive MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands; N=500) and the neutral IMS (Interventional Management of Stroke) III trial (N=656). We used a causal mediation model, with linear and ordinal logistic regression adjusted for confounders, to evaluate the NIHSS 24 hours and 5 to 7 days after endovascular treatment as primary outcome measures (instead of the mRS at 3 months) in both trials. Patients who had died before the NIHSS was assessed received the maximum score of 42. NIHSS+1 was then log10-transformed. Results- In both trials, there was a significant correlation between the NIHSS at 24 hours and 5 to 7 days and the mRS. In MR CLEAN, we found a significant effect of endovascular treatment on the mRS and on the NIHSS at 24 hours and 5 to 7 days. After adjustment for NIHSS at 24 hours and 5 to 7 days, the effect of endovascular treatment on the mRS decreased from common odds ratio 1.68 (95% CI, 1.22-2.32) to respectively 1.36 (95% CI, 0.97-1.91) and 1.24 (95% CI, 0.87-1.79), indicating that treatment effect on the mRS is in large part mediated by the NIHSS. In the IMS III trial there was no treatment effect on the NIHSS at 24 hours and 5 to 7 days, corresponding with the absence of a treatment effect on the mRS. Conclusions- The NIHSS within 1 week satisfies the requirements for a surrogate end point and may be used as a primary outcome measure in trials of acute treatment for ischemic stroke, particularly in phase II(b) trials. This could reduce stroke-outcome assessment to its essentials (ie, neurological deficit), and reduce trial duration and costs. Whether and under which conditions it could be used in phase III trials requires a debate in the field with all parties. Clinical Trial Registration- URL: http://www.isrctn.com. Unique identifier: ISRCTN10888758; https://www.clinicaltrials.gov. Unique identifier: NCT00359424.</p
National Institutes of Health Stroke Scale: An Alternative Primary Outcome Measure for Trials of Acute Treatment for Ischemic Stroke
Background and Purpose- The modified Rankin Scale (mRS) at 3 months is the most commonly used primary outcome measure in stroke treatment trials, but it lacks specificity and requires long-term follow-up interviews, which consume time and resources. An alternative may be the National Institutes of Health Stroke Scale (NIHSS), early after stroke. Our aim was to evaluate whether the NIHSS assessed within 1 week after treatment could serve as a primary outcome measure for trials of acute treatment for ischemic stroke. Methods- We used data from 2 randomized controlled trials of endovascular treatment for ischemic stroke: the positive MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands; N=500) and the neutral IMS (Interventional Management of Stroke) III trial (N=656). We used a causal mediation model, with linear and ordinal logistic regression adjusted for confounders, to evaluate the NIHSS 24 hours and 5 to 7 days after endovascular treatment as primary outcome measures (instead of the mRS at 3 months) in both trials. Patients who had died before the NIHSS was assessed received the maximum score of 42. NIHSS+1 was then log10-transformed. Results- In both trials, there was a significant correlation between the NIHSS at 24 hours and 5 to 7 days and the mRS. In MR CLEAN, we found a significant effect of endovascular treatment on the mRS and on the NIHSS at 24 hours and 5 to 7 days. After adjustment for NIHSS at 24 hours and 5 to 7 days, the effect of endovascular treatment on the mRS decreased from common odds ratio 1.68 (95% CI, 1.22-2.32) to respectively 1.36 (95% CI, 0.97-1.91) and 1.24 (95% CI, 0.87-1.79), indicating that treatment effect on the mRS is in large part mediated by the NIHSS. In the IMS III trial there was no treatment effect on the NIHSS at 24 hours and 5 to 7 days, corresponding with the absence of a treatment effect on the mRS. Conclusions- The NIHSS within 1 week satisfies the requirements for a surrogate end point and may be used as a primary outcome measure in trials of acute treatment for ischemic stroke, particularly in phase II(b) trials. This could reduce stroke-outcome assessment to its essentials (ie, neurological deficit), and reduce trial duration and costs. Whether and under which conditions it could be used in phase III trials requires a debate in the field with all parties. Clinical Trial Registration- URL: http://www.isrctn.com. Unique identifier: ISRCTN10888758; https://www.clinicaltrials.gov. Unique identifier: NCT00359424
- …