430 research outputs found

    Electromechanical Simulation of Actively Controlled Rotordynamic Systems with Piezoelectric Actuators

    Get PDF
    Theories and tests for incorporating piezoelectric pushers as actuator devices for active vibration control are discussed. It started from a simple model with the assumption of ideal pusher characteristics and progressed to electromechanical models with nonideal pushers. Effects on system stability due to the nonideal characteristics of piezoelectric pushers and other elements in the control loop were investigated

    Digital Artefacts and The Role of Digital Affordance

    Get PDF
    This work investigates how the concept of affordance should be revised following the digital evolution. Starting from a review of the literature about affordance, the most acknowledged constructs are compared with the variegated definitions of digital artefacts. The paper proposes a definition of digital affordance, overcoming the inconsistencies identified in the literature. The study is enriched by a series of interviews to investigate the final users' perception of affordance. Finally, the paper shows the application of the proposed model with a case study related to food delivery services

    New clones and old varieties: Quality of sicilian hillside apple cultivation

    Get PDF
    Aims: The aim of this study is to evaluate the qualitative characteristics of the new clones according to the Mediterranean hillside growing environment and, at the same time, to highlight the qualitative peculiarities of the old varieties in order to avoid genetic loss. Introduction: Several apple varieties are constantly selected for improved quality traits and introduced for cultivation and marketing in addition to a few traditional and affirmed varieties. On the other side, local genotype and ancient varieties are still valorised due to the request of a niche market. Methods: We have studied the physico-chemical quality and the sensory traits of the fruit obtained in this particular environment. Results: Our study reveals a qualitative response to the environment in a genotype-dependent manner. As expected, the physico-chemical characteristics favour the new clones. Conclusion: Both old varieties and new clones of apple fruit, grown in the Mediterranean area, turned out to be of high quality. Nevertheless, results revealed the better characteristics of new clones for commercialization in large-scale supply chain

    Pomological, sensorial, nutritional and nutraceutical profile of seven cultivars of Cherimoya (Annona cherimola Mill)

    Get PDF
    In this work, the food quality of four international (Campas, Chaffey, Fino de Jete and White) and three local (Daniela, Torre1 and Torre2) cultivars of Cherimoya (Annona cherimola Mill) was investigated. With this aim, pomological traits, sensorial attributes, physiochemical parameters (pH, total soluble content and total acidity), nutritional composition (macro- and micro-nutrients) and nutraceutical values (bioactive compounds, radical scavenging and antioxidant properties) were evaluated. Among the seven observed cultivars, Fino de Jete was identified as the best, not only for its commercial attributes such as pomological traits and physiochemical values, but also for its nutritional composition. On the other hand, Chaffey and Daniela were the cultivars with the highest content of polyphenols, proanthocyanidins, and with the strongest antioxidant capacity. Concerning the two local ecotypes, Torre1 and Torre2, they displayed a balanced nutritional profile that, if combined with their discrete nutraceutical, physicochemical and pomological values, may result in a reassessment of their commercial impact. In conclusion, our data provide interesting information about the pomological, nutritional, and nutraceutical properties of cherimoya fruits. Our results, in addition to promoting the commercial impact of local cultivars, may increase the use of individual cultivars in breeding programs

    Physicochemical, Nutraceutical and Sensory Traits of Six Papaya (Carica papaya L.) Cultivars Grown in Greenhouse Conditions in the Mediterranean Climate

    Get PDF
    Six papaya (Carica papaya L.) cultivars, grown in a Mediterranean climate under greenhouse conditions, were screened for physicochemical properties, antioxidant capacity, nutritional and sensory characteristics. The fruits, harvested with more than 50% of yellow surface (between 60% and 77%) were tested for carotenoids content, phenolic content, reducing activity (ABTS) and cellular antioxidant activity (CAA50). The physicochemical traits were measured in terms of the titratable acidity and soluble content whereas proximal composition along with moisture, fats, total sugar, ash, vitamin A, C and E content. Moreover, the sensory profile was analyzed by a semi-trained panel. Although the six analyzed cultivars reached qualitative characteristics to satisfy market needs, significant differences among them were found in a genotype-dependent manner. In particular, Cartagena and Maradol cultivars evidenced the highest values of minerals and vitamins, carotenoids, polyphenols, ABTS and CAA50 and reached the best commercial requisites (size, total soluble solids content/titratable acidity ratio). As for sensory analysis, we observed significate differences only for sweetness, juiciness, odor and flavor of peach and exotic fruits whereas descriptors related to unpleasant defects or sensations always have very low scores in all the observed cultivars. These results highlight the possibility of obtaining quality papaya fruits in a Mediterranean climate using greenhouse growing

    Modified Atmosphere Packaging and low temperature storage extend marketability of cherimoya (Annona cherimola Mill.)

    Get PDF
    Cherimoya is a subtropical fruit characterized by a delicious, sweet flavor and beneficial health properties, which found suitable growing conditions in the South of Italy. However, the marketing of this product is halted by its high perishability, which limits the shelf-life of the fresh fruit to few days after harvest and does not allow for commercialization beyond local markets. Studies have shown that storage of this fruit in controlled atmosphere, using Modified Atmosphere Packaging technologies, extended the post-harvest life of Cherimoya, but little is still known about the evolution of its sensory, nutraceutical and microbiological characteristics during such storage period. In this paper, we studied the effect of a 4-days long active-MAP (30% CO2 – 10% O2 – 60% N2) storage period, associated with cold temperatures, on the physico-chemical, sensory, nutraceutical and microbiological quality traits of Italian-grown cherimoya fruits, compared with passive-MAP (Air composition, 21% O2 + 1% CO2 + 78% N2) and simple cold storage. Active-MAP proved effective in delaying the reaching of the optimal consumption point until 10 days from harvest, besides showing absence of microbial growth until after 7 days from harvest. Both active- and passive-MAP treatments maintained better nutraceutical values than control until the end of the trial period, and sensory analysis confirmed that active-MAP treated fruits were at the optimal commercial stage after 10 days from harvest

    Fast wide-volume functional imaging of engineered in vitro brain tissues

    Get PDF
    The need for in vitro models that mimic the human brain to replace animal testing and allow high-throughput screening has driven scientists to develop new tools that reproduce tissue-like features on a chip. Three-dimensional (3D) in vitro cultures are emerging as an unmatched platform that preserves the complexity of cell-to-cell connections within a tissue, improves cell survival, and boosts neuronal differentiation. In this context, new and flexible imaging approaches are required to monitor the functional states of 3D networks. Herein, we propose an experimental model based on 3D neuronal networks in an alginate hydrogel, a tunable wide-volume imaging approach, and an efficient denoising algorithm to resolve, down to single cell resolution, the 3D activity of hundreds of neurons expressing the calcium sensor GCaMP6s. Furthermore, we implemented a 3D co-culture system mimicking the contiguous interfaces of distinct brain tissues such as the cortical-hippocampal interface. The analysis of the network activity of single and layered neuronal co-cultures revealed cell-type-specific activities and an organization of neuronal subpopulations that changed in the two culture configurations. Overall, our experimental platform represents a simple, powerful and cost-effective platform for developing and monitoring living 3D layered brain tissue on chip structures with high resolution and high throughput

    Transition metal nanoparticles on pyrrole-decorated sp2 carbon allotropes for selective hydrogen isotopic exchange

    Get PDF
    Compared to homogeneous catalysts, heterogeneous systems possess more attractiveness in the chemical industry because of the easier separation from the reaction products, lower amount of wastes, larger recyclability and lower toxicity and corrosiveness. Preparation of supported metal nanoparticles often requires energy demanding techniques such as laser ablation, electrochemical reduction, and high temperature heat treatments. In this work we present a facile and sustainable method to functionalize multi-walled carbon nanotubes (MWCNTs) and exploit the novel surface reactivity to deposit Ruthenium nanoparticles. Serinol pyrrole (SP) was synthesized and, through a Domino reaction, grafted on carbon nanotubes’ surface. Mild reducing conditions were employed to decorate CNT-SP with Ruthenium nanoparticles. The latter adduct was characterized by means of X-ray diffraction and transmission electron microscopy. Ru/CNT-SP was then tested in the selective deuteration of quinoline. High selectivity and conversion, determined through H-NMR, were achieved compared to commercial Ru/C catalysts. The results obtained in this work led to the filing of two patent applications
    • …
    corecore