88 research outputs found

    EP1 receptor within the ventrolateral periaqueductal grey controls thermonociception and rostral ventromedial medulla cell activity in healthy and neuropathic rat

    Get PDF
    The aim of this study was to investigate the expression of prostaglandin EP1 receptor within the ventrolateral periaqueductal grey (VL PAG). The role of VL PAG EP1 receptor in controlling thermonociception and rostral ventromedial medulla (RVM) activity in healthy and neuropathic rats was also examined. EP1 receptor was indeed found to be expressed within the VL PAG and co-localized with vesicular GABA transporter. Intra-VL PAG microinjection of ONO-DI-004, a selective EP1 receptor agonist, dose-dependently reduced tail flick latency as well as respectively increasing and decreasing the spontaneous activity of ON and OFF cells. Furthermore, it increased the ON cell burst and OFF cell pause. Intra-VL PAG prostaglandin E2 (PGE2) behaved similarly to ONO-DI-004. The effects of ONO-DI-004 and PGE2 were antagonized by intra-VL PAG L335677, a selective EP1 receptor antagonist. L335677 dose-dependently increased the tail flick latency and ongoing activity of the OFF cells, while reducing the ongoing ON cell activity. It also decreased the ON cell burst and OFF cell pause. In neuropathic rats using spare nerve injury (SNI) of the sciatic nerve model, EP1 receptor expression decreased in the VL PAG. However, ONO-DI-004 and L335677 were able to alter pain responses and ON and OFF cell activity, as they did in healthy animals. Collectively, these data show that within the VL PAG, EP1 receptor has a facilitatory effect on the nociceptive response and consistently affects RVM neuron activity. Thus, the blockade of EP1 receptor in the VL PAG leads to antinociception in neuropathic pain conditions, despite its down-regulation. The expression of EP1 receptor on GABAergic neurons is consistent with an EP1 receptor blockade-induced disinhibition of the antinociceptive descending pathway at VL PAG level

    2-Pentadecyl-2-oxazoline ameliorates memory impairment and depression-like behaviour in neuropathic mice: possible role of adrenergic alpha2- and H3 histamine autoreceptors

    Get PDF
    Neuropathic pain (NP) remains an untreatable disease due to the complex pathophysiology that involves the whole pain neuraxis including the forebrain. Sensory dysfunctions such as allodynia and hyperalgesia are only part of the symptoms associated with neuropathic pain that extend to memory and affectivity deficits. The development of multi-target molecules might be a promising therapeutic strategy against the symptoms associated with NP. 2-pentadecyl-2-oxazoline (PEA-OXA) is a plant-derived agent, which has shown effectiveness against chronic pain and associated neuropsychiatric disorders. The molecular mechanisms by which PEA-OXA exerts its effects are, however, only partially known. In the current study, we show that PEA-OXA, besides being an alpha2 adrenergic receptor antagonist, also acts as a modulator at histamine H3 receptors, and report data on its effects on sensory, affective and cognitive symptoms associated with the spared nerve injury (SNI) model of neuropathic pain in mice. Treatment for 14 days with PEA-OXA after the onset of the symptoms associated with neuropathic pain resulted in the following effects: (i) allodynia was decreased; (ii) affective/cognitive impairment associated with SNI (depression, spatial, and working memories) was counteracted; (iii) long-term potentiation in vivo in the lateral entorhinal cortex-dentate gyrus (perforant pathway, LPP) was ameliorated, (iv) hippocampal glutamate, GABA, histamine, norepinephrine and dopamine level alterations after peripheral nerve injury were reversed, (v) expression level of the TH positive neurons in the Locus Coeruleus were normalized. Thus, a 16-day treatment with PEA-OXA alleviates the sensory, emotional, cognitive, electrophysiological and neurochemical alterations associated with SNI-induced neuropathic pain

    Development of a nomogram for predicting pathological complete response in luminal breast cancer patients following neoadjuvant chemotherapy

    Get PDF
    Background:Given the low chance of response to neoadjuvant chemotherapy (NACT) in luminal breast cancer (LBC), the identification of predictive factors of pathological complete response (pCR) represents a challenge. A multicenter retrospective analysis was performed to develop and validate a predictive nomogram for pCR, based on pre-treatment clinicopathological features. Methods:Clinicopathological data from stage I-III LBC patients undergone NACT and surgery were retrospectively collected. Descriptive statistics was adopted. A multivariate model was used to identify independent predictors of pCR. The obtained log-odds ratios (ORs) were adopted to derive weighting factors for the predictive nomogram. The receiver operating characteristic analysis was applied to determine the nomogram accuracy. The model was internally and externally validated. Results:In the training set, data from 539 patients were gathered: pCR rate was 11.3% [95% confidence interval (CI): 8.6-13.9] (luminal A-like: 5.3%, 95% CI: 1.5-9.1, and luminal B-like: 13.1%, 95% CI: 9.8-13.4). The optimal Ki67 cutoff to predict pCR was 44% (area under the curve (AUC): 0.69; p < 0.001). Clinical stage I-II (OR: 3.67, 95% CI: 1.75-7.71, p = 0.001), Ki67 > 44% (OR: 3.00, 95% CI: 1.59-5.65, p = 0.001), and progesterone receptor (PR) <1% (OR: 2.49, 95% CI: 1.15-5.38, p = 0.019) were independent predictors of pCR, with high replication rates at internal validation (100%, 98%, and 87%, respectively). According to the nomogram, the probability of pCR ranged from 3.4% for clinical stage III, PR > 1%, and Ki67 <44% to 53.3% for clinical stage I-II, PR < 1%, and Ki67 > 44% (accuracy: AUC, 0.73; p < 0.0001). In the validation set (248 patients), the predictive performance of the model was confirmed (AUC: 0.7; p < 0.0001). Conclusion:The combination of commonly available clinicopathological pre-NACT factors allows to develop a nomogram which appears to reliably predict pCR in LBC

    The blockade of the transient receptor potential vanilloid type 1 and fatty acid amide hydrolase decreases symptoms and central sequelae in the medial prefrontal cortex of neuropathic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuropathic pain is a chronic disease resulting from dysfunction within the "pain matrix". The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1) and the catabolic enzyme fatty acid amide hydrolase (FAAH) in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL) cortex in neuropathic rats.</p> <p>Results</p> <p>The effect of <it>N</it>-arachidonoyl-serotonin (AA-5-HT), a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI) rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the up-regulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively.</p> <p>Conclusion</p> <p>These data suggest a possible involvement of endovanilloids in the cortical plastic changes associated with peripheral nerve injury and indicate that therapies able to normalize endovanilloid transmission may prove useful in ameliorating the symptoms and central sequelae associated with neuropathic pain.</p

    Level II Oncoplastic Surgery as an Alternative Option to Mastectomy with Immediate Breast Reconstruction in the Neoadjuvant Setting: A Multidisciplinary Single Center Experience

    Get PDF
    : Oncoplastic surgery level II techniques (OPSII) are used in patients with operable breast cancer. There is no evidence regarding their safety and efficacy after neoadjuvant chemotherapy (NAC). The aim of this study was to compare the oncological and aesthetic outcomes of this technique compared with those observed in mastectomy with immediate breast reconstruction (MIBR), in post-NAC patients undergoing surgery between January 2016 and March 2021. Local disease-free survival (L-DFS), regional disease-free survival (R-DFS), distant disease-free survival (D-DFS), and overall survival (OS) were compared; the aesthetic results and quality of life (QoL) were evaluated using BREAST-Q. A total of 297 patients were included, 87 of whom underwent OPSII and 210 of whom underwent MIBR. After a median follow-up of 39.5 months, local recurrence had occurred in 3 patients in the OPSII group (3.4%), and in 13 patients in the MIBR group (6.1%) (p = 0.408). The three-year L-DFS rates were 95.1% for OPSII and 96.2% for MIBR (p = 0.286). The three-year R-DFS rates were 100% and 96.4%, respectively (p = 0.559). The three-year D-DFS rate were 90.7% and 89.7% (p = 0.849). The three-year OS rates were 95.7% and 95% (p = 0.394). BREAST-Q highlighted significant advantages in physical well-being for OPSII. No difference was shown for satisfaction with breasts (p = 0.656) or psychosocial well-being (p = 0.444). OPSII is safe and effective after NAC. It allows oncological and aesthetic outcomes with a high QoL, and is a safe alternative for locally advanced tumors which are partial responders to NAC

    Implementation of the ERAS (Enhanced Recovery After Surgery) protocol for colorectal cancer surgery in the Piemonte Region with an Audit and Feedback approach: study protocol for a stepped wedge cluster randomised trial: a study of the EASY-NET project

    Get PDF

    Metabotropic glutamate receptor 7: From synaptic function to therapeutic implications

    No full text
    Metabotropic glutamate receptor 7 (mGluR7) is localized presynaptically at the active zone of neurotransmitter release. Unlike mGluR4 and mGluR8, which share mGluR7’s presynaptic location, mGluR7 shows low affinity for glutamate and is activated only by high glutamate concentrations. Its wide distribution in the central nervous system (CNS) and evolutionary conservation across species suggest that mGluR7 plays a primary role in controlling excitatory synapse function. High mGluR7 expression has been observed in several brain regions that are critical for CNS functioning and are involved in neurological and psychiatric disorder development. Until the recent discovery of selective ligands for mGluR7, techniques to elucidate its role in neural function were limited to the use of knockout mice and gene silencing. Studies using these two techniques have revealed that mGluR7 modulates emotionality, stress and fear responses. N,N'-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082) was reported as the first selective mGluR7 allosteric agonist. Pharmacological effects of AMN082 have not completely confirmed the mGluR7-knockout mouse phenotype; this has been attributed to rapid receptor internalization after drug treatment and to the drug’s apparent lack of in vivo selectivity. Therefore, the more recently developed mGluR7 negative allosteric modulators (NAMs) are crucial for understanding mGluR7 function and for exploiting its potential as a target for therapeutic interventions. This review presents the main findings regarding mGluR7’s effect on modulation of synaptic function and its role in normal CNS function and in models of neurologic and psychiatric disorders
    corecore