5 research outputs found

    Administration time effect of dietary proanthocyanidins on the metabolome of Fischer 344 rats is sex- and diet-dependent

    Full text link
    Proanthocyanidins (PAs) are one of the most commonly ingested polyphenols in the human diet, with a wide range of beneficial health effects. Remarkably, PAs have been reported to influence core and peripheral clock genes expression, and their effects may change in a time-of-day dependent manner. Therefore, the aim of this study was to investigate whether the capacity of PAs to modulate the metabolome is conditioned by the time-of-day in which these compounds are consumed in a diet- and sexdependent manner. To do this, a grape seed proanthocyanidin extract (GSPE) was administered to female and male Fischer 344 rats at ZT0 (in the morning) and ZT12 (at night) and the GSPE administration time effect was evaluated on clock genes expression, melatonin hormone and serum metabolite levels in a healthy and obesogenic context. The results showed an administration time effect of GSPE on the metabolome in a sex and diet-dependent manner. Specifically, there was an effect on amino acid, lipid and cholate metabolite levels that correlated with the central clock genes expression. Therefore, this study shows a strong influence of sex and diet on the PAs effects on the metabolome, modulated in turn by the time-of-day

    Considerations on the Analysis of E-900 Food Additive: An NMR Perspective

    No full text
    Food additives are in widespread use in the food industry to extend the shelf life of food, improve its organoleptic characteristics or facilitate industrial processing. Their use is not without controversy, which makes regulation and control crucial for food safety and public health. Among food additives, silicone-based antifoaming agents (polysiloxanes or E900) are difficult to analyze and quantify due to their polymeric nature. Currently, there is no official method of quantifying this additive in foods. In this context, nuclear magnetic resonance (NMR) is a quantitative method for speciation analysis of silicon compounds almost without known interferents. In this work, we describe the evolution of the regulation of the E900 additive, discuss different analytic methods quantifying polydimethylsiloxanes (PDMS), and propose a new method based on NMR suitable for analyzing the content of E900 in the form of PDMS in various types of food from dietary oils to marmalades and jellies, among others. The proposed method consists of a previous quantitative concentration of PDMS by liquid–liquid extraction and the monitoring of the quantification using a bis(trimethylsilyl)benzene (BTMSB) standard to control the variability, ranging within 2–7%, depending on the food. This simple, direct, and reproducible procedure for aqueous and lipidic foods may help to monitor and fill a gap in regulatory legislation regarding the E900 additive

    Considerations on the Analysis of E-900 Food Additive: An NMR Perspective

    No full text
    Food additives are in widespread use in the food industry to extend the shelf life of food, improve its organoleptic characteristics or facilitate industrial processing. Their use is not without controversy, which makes regulation and control crucial for food safety and public health. Among food additives, silicone-based antifoaming agents (polysiloxanes or E900) are difficult to analyze and quantify due to their polymeric nature. Currently, there is no official method of quantifying this additive in foods. In this context, nuclear magnetic resonance (NMR) is a quantitative method for speciation analysis of silicon compounds almost without known interferents. In this work, we describe the evolution of the regulation of the E900 additive, discuss different analytic methods quantifying polydimethylsiloxanes (PDMS), and propose a new method based on NMR suitable for analyzing the content of E900 in the form of PDMS in various types of food from dietary oils to marmalades and jellies, among others. The proposed method consists of a previous quantitative concentration of PDMS by liquid–liquid extraction and the monitoring of the quantification using a bis(trimethylsilyl)benzene (BTMSB) standard to control the variability, ranging within 2–7%, depending on the food. This simple, direct, and reproducible procedure for aqueous and lipidic foods may help to monitor and fill a gap in regulatory legislation regarding the E900 additive

    The Disruption of Liver Metabolic Circadian Rhythms by a Cafeteria Diet Is Sex-Dependent in Fischer 344 Rats

    No full text
    Circadian rhythms are ~24 h fluctuations of different biological processes that are regulated by the circadian clock system. They exert a major influence on most of the metabolism, such as the hepatic metabolism. This rhythmicity can be disrupted by obesogenic diets, fact that is considered to be a risk factor for the development of metabolic diseases. Nevertheless, obesogenic diets do not affect both genders in the same manner. We hypothesized that the circadian rhythms disruption of the hepatic metabolism, caused by obesogenic diets, is gender-dependent. Male and female Fischer 344 rats were fed either a standard diet or a cafeteria diet and sacrificed at two different moments, at zeitgeber 3 and 15. Only female rats maintained the circadian variations of the hepatic metabolism under a cafeteria diet. Most of those metabolites were related with the very low density lipoprotein (VLDL) synthesis, such as choline, betaine or phosphatidylcholine. Most of these metabolites were found to be increased at the beginning of the dark period. On the other hand, male animals did not show these time differences. These findings suggest that females might be more protected against the circadian disruption of the hepatic metabolism caused by a cafeteria diet through the increase of the VLDL synthesis at the beginning of the feeding time
    corecore