6,333 research outputs found

    Singular Contractions of W-algebras

    Full text link
    Many WW-algebras (e.g. the WNW_N algebras) are consistent for all values of the central charge except for a discrete set of exceptional values. We show that such algebras can be contracted to new consistent degenerate algebras at these exceptional values of the central charge.Comment: 10 pages, phyzzx.tex, QMW-92-7.(minor spelling and acknowledgement corrections

    Electronic Structure of gated graphene and graphene ribbons

    Get PDF
    We study the electronic structure of gated graphene sheets. We consider both infinite graphene and finite width ribbons. The effect of Coulomb interactions between the electrically injected carriers and the coupling to the external gate are computed self-consistently in the Hartree approximation. We compute the average density of extra carriers, n2Dn_{2D}, the number of occupied subbands and the density profiles as a function of the gate potential VgV_g. We discuss quantum corrections to the classical capacitance and we calculate the threshold VgV_g above which semiconducting armchair ribbons conduct. We find that the ideal conductance of perfectly transmitting wide ribbons is proportional to the square root of the gate voltage.Comment: 8 pages, 6 figure

    Vortices in a rotating BEC under extreme elongation

    Full text link
    We investigate a non-axisymmetric rotating BEC in a limit of rotation frequency for which the BEC transforms into a quasi-one-dimensional system. We compute the vortex lattice wavefunction by minimizing the Gross-Pitaevskii energy functional in the lowest Landau level approximation for different confinement potentials. The condensate typically presents a changing number of vortex rows as a function of the interaction strength or rotation-confinement ratio. More specifically, the vortex lattices can be classified into two classes according to their symmetry with respect to the longitudinal axis. These two classes correspond to different local minima of the energy functional and evolve independently as a function of the various parameters.Comment: 8 pages, 12 figure

    Autonomous distributed LQR/APF control algorithms for CubeSat swarms manoeuvring in eccentric orbits

    Get PDF
    Spacecraft formation flying has shown to be promising approach to enhance mission capabilities. Nevertheless, formation flying presents several control challenges which escalate as the numbers of elements in the formation is increased. The objective of this paper is to develop decentralised control algorithms to regulate the station-keeping, reconfiguration and collision avoidance of spacecraft in formation around eccentric reference orbits using the combination of a Linear Quadratic Regulator (LQR) and an Artificial Potential Function (APF). Within this control scheme, the LQR will provide station-keeping and reconfiguration capabilities toward desired positions, while optimizing fuel consumption and the APF will ensure collision free manoeuvres between the elements of the formation during manoeuvres. The controller is designed under the assumption of continuous thrust as a standard LQR problem using the Pontryagin minimum principle, an APF based in normalized Gaussian functions and the Tschauner and Hempel (TH) equations as the relative dynamics model

    Critical fields for vortex expulsion from narrow superconducting strips

    Full text link
    We calculate the critical magnetic fields for vortex expulsion for an infinitely long superconducting strip, using the Ginzburg-Landau formalism. Two critical fields can be defined associated with the disappearance of either the energetic stability or metastability of vortices in the center of the strip for decreasing magnetic fields. We compare the theoretical predictions for the critical fields in the London formalism with ours and with recently published experimental results. As expected, for narrow strips our results reproduce better the experimental findings.Comment: 5 pages, 5 figure

    Many-body excitations in tunneling current spectra of a few-electron quantum dot

    Full text link
    Inherent asymmetry in the tunneling barriers of few-electron quantum dots induces intrinsically different tunneling currents for forward and reverse source-drain biases in the non-linear transport regime. Here we show that in addition to spin selection rules, overlap matrix elements between many-body states are crucial for the correct description of tunneling transmission through quantum dots at large magnetic fields. Signatures of excited (N-1)-electron states in the transport process through the N-electron system are clearly identified in the measured transconductances. Our analysis clearly confirms the validity of single-electron quantum transport theory in quantum dots.Comment: 5 pages, 2 figure

    Capacitance spectroscopy in quantum dots: Addition spectra and decrease of tunneling rates

    Full text link
    A theoretical study of single electron capacitance spectroscopy in quantum dots is presented. Exact diagonalizations and the unrestricted Hartree-Fock approximation have been used to shed light over some of the unresolved aspects. The addition spectra of up to 15 electrons is obtained and compared with the experiment. We show evidence for understanding the decrease of the single electron tunneling rates in terms of the behavior of the spectral weight function. (To appear in Phys. Rev. B (Rapid Comm.))Comment: 10 pages, Revtex, hard copy or PostScript Figures upon request on [email protected]
    corecore