7,664 research outputs found

    Kondo effect and spin quenching in high-spin molecules on metal substrates

    Full text link
    Using a state-of-the art combination of density functional theory and impurity solver techniques we present a complete and parameter-free picture of the Kondo effect in the high-spin (S=3/2S=3/2) coordination complex known as Manganese Phthalocyanine adsorbed on the Pb(111) surface. We calculate the correlated electronic structure and corresponding tunnel spectrum and find an asymmetric Kondo resonance, as recently observed in experiments. Contrary to previous claims, the Kondo resonance stems from only one of three possible Kondo channels with origin in the Mn 3d-orbitals, its peculiar asymmetric shape arising from the modulation of the hybridization due to strong coupling to the organic ligand. The spectral signature of the second Kondo channel is strongly suppressed as the screening occurs via the formation of a many-body singlet with the organic part of the molecule. Finally, a spin-1/2 in the 3d-shell remains completely unscreened due to the lack of hybridization of the corresponding orbital with the substrate, hence leading to a spin-3/2 underscreened Kondo effect.Comment: 5 pages, 2 figure

    Critical comparison of electrode models in density functional theory based quantum transport calculations

    Full text link
    We study the performance of two different electrode models in quantum transport calculations based on density functional theory: Parametrized Bethe lattices and quasi-one dimensional wires or nanowires. A detailed account of implementation details in both cases is given. From the systematic study of nanocontacts made of representative metallic elements, we can conclude that parametrized electrode models represent an excellent compromise between computational cost and electronic structure definition as long as the aim is to compare with experiments where the precise atomic structure of the electrodes is not relevant or defined with precision. The results obtained using parametrized Bethe lattices are essentially similar to the ones obtained with quasi one dimensional electrodes for large enough sections of these, adding a natural smearing to the transmission curves that mimics the true nature of polycrystalline electrodes. The latter are more demanding from the computational point of view, but present the advantage of expanding the range of applicability of transport calculations to situations where the electrodes have a well-defined atomic structure, as is case for carbon nanotubes, graphene nanoribbons or semiconducting nanowires. All the analysis is done with the help of codes developed by the authors which can be found in the quantum transport toolbox Alacant and are publicly available.Comment: 17 pages, 12 figure

    Mapping the Beta-Sheet Structure of the Yeast Prion Sup35 through Creation of Targeted Mutant Forms

    Get PDF
    Proteins with an aggregated form rich in beta-sheet structure are known as amyloids, of which a subset are infectious. These infectious proteins are known as prions and cause diseases including bovine spongiform encephalopathy (“Mad Cow” disease). Several prions have been identified in the baker’s yeast, Saccharomyces cerevisiae. One of the most well-studied yeast prions is the protein Sup35. To understand the fine protein structure of Sup35 better, we used PCR-based mutagenesis to introduce a lysine residue (a charged amino acid) at five defined places in the protein sequence of Sup35. We describe our process for creating these mutant versions and the results of DNA sequencing of each mutant version. The next step will be to assess prion formation and stability of clones with the correct sequences. Understanding the behavior of yeast prions has proven helpful in understanding human amyloid diseases and further studies on these yeast prions, including Sup35, will expand our knowledge further

    Exchange induced charge inhomogeneities in rippled neutral graphene

    Full text link
    A new mechanism that induces charge density variations in corrugated graphene is proposed. Here it is shown how the interplay between lattice deformations and exchange interactions can induce charge separation, i.e., puddles of electrons and holes, for realistic deformation values of the graphene sheet. The induced charge density lies in the range of 1011−101210^{11}-10^{12} cm−2^{-2}, which is compatible with recent measurements.Comment: 4 pages, two figures include

    Quantum Ratchets at High Temperatures

    Full text link
    Using the continued-fraction method we solve the Caldeira-Leggett master equation in the phase-space (Wigner) representation to study Quantum ratchets. Broken spatial symmetry, irreversibility and periodic forcing allows for a net current in these systems. We calculate this current as a function of the force under adiabatic conditions. Starting from the classical limit we make the system quantal. In the quantum regime tunnel events and over-barrier wave reflection phenomena modify the classical result. Finally, using the phase-space formalism we give some insights about the decoherence in these systems.Comment: submitted to Physia E (proceedings of conference "Frontiers of Quantum and Mesoscopic Thermodynamics", Prague 26-29 July 2004

    Nonlinear response of superparamagnets with finite damping: an analytical approach

    Full text link
    The strongly damping-dependent nonlinear dynamical response of classical superparamagnets is investigated by means of an analytical approach. Using rigorous balance equations for the spin occupation numbers a simple approximate expression is derived for the nonlinear susceptibility. The results are in good agreement with those obtained from the exact (continued-fraction) solution of the Fokker-Planck equation. The formula obtained could be of assistance in the modelling of the experimental data and the determination of the damping coefficient in superparamagnets.Comment: 7 PR pages, 2 figure
    • 

    corecore