355 research outputs found

    SCAN: Learning Hierarchical Compositional Visual Concepts

    Get PDF
    The seemingly infinite diversity of the natural world arises from a relatively small set of coherent rules, such as the laws of physics or chemistry. We conjecture that these rules give rise to regularities that can be discovered through primarily unsupervised experiences and represented as abstract concepts. If such representations are compositional and hierarchical, they can be recombined into an exponentially large set of new concepts. This paper describes SCAN (Symbol-Concept Association Network), a new framework for learning such abstractions in the visual domain. SCAN learns concepts through fast symbol association, grounding them in disentangled visual primitives that are discovered in an unsupervised manner. Unlike state of the art multimodal generative model baselines, our approach requires very few pairings between symbols and images and makes no assumptions about the form of symbol representations. Once trained, SCAN is capable of multimodal bi-directional inference, generating a diverse set of image samples from symbolic descriptions and vice versa. It also allows for traversal and manipulation of the implicit hierarchy of visual concepts through symbolic instructions and learnt logical recombination operations. Such manipulations enable SCAN to break away from its training data distribution and imagine novel visual concepts through symbolically instructed recombination of previously learnt concepts

    Novel Y2O3-codoped Yb/Tm-doped picosecond fiber laser

    Get PDF
    We demonstrate the novel picosecond mode-locked Y2O 3-codoped Yb/Tm-doped fiber lasers, operating at 1950 nm and producing pulses of up to 1 nJ energy, using a SESAM and an Er-doped pump fiber laser operating at the wavelength 1590 nm or a semiconductor pump laser operating at the wavelength of 1560 nm. We also report on the spectroscopic characterization of these new fibers with various compositions, identifying the optimum one for the maximum Yb/Tm energy transfer, the latter increasing with the increase of the Y concentration. The observed energy transfer between Yb and Tm makes this laser promising also for direct diode-pumping with most advanced and low cost 975 nm diodes, making this laser attractive for compact low cost picosecond Tm-doped fiber laser systems

    Preliminary studies of surface water quality in Damodar River basin (West Bengal, India)

    Get PDF
    The purpose of the research was to study the main parameters of the chemical composition of surface water and its quality in the Damodar River basin near the Durgapur city where the surface water is used for water supply of the local community. During fieldwork water of the Damodar River, its tributaries (Tamla River and small streams - receivers of industrial wastewater and drainage water) and the Maithon Reservoir was sampled from the layer 0.1-0.5 m. Preliminary studies have shown that the main pollutants in the study area are organic compounds, ammonium, phosphate and fluoride ions. Deterioration of water quality in some sampling points is connected with a low content of dissolved oxygen and high concentrations of nitrite, chloride and sulfate ions

    Preliminary studies of surface water quality in Damodar River basin (West Bengal, India)

    Get PDF
    The purpose of the research was to study the main parameters of the chemical composition of surface water and its quality in the Damodar River basin near the Durgapur city where the surface water is used for water supply of the local community. During fieldwork water of the Damodar River, its tributaries (Tamla River and small streams - receivers of industrial wastewater and drainage water) and the Maithon Reservoir was sampled from the layer 0.1-0.5 m. Preliminary studies have shown that the main pollutants in the study area are organic compounds, ammonium, phosphate and fluoride ions. Deterioration of water quality in some sampling points is connected with a low content of dissolved oxygen and high concentrations of nitrite, chloride and sulfate ions

    Inhibition of GSK-3 induces differentiation and impaired glucose metabolism in renal cancer

    Get PDF
    Glycogen synthase kinase-3 (GSK-3), a constitutively active serine/threonine kinase, is a key regulator of numerous cellular processes ranging from glycogen metabolism to cell cycle regulation and proliferation. Consistent with its involvement in many pathways, it has also been implicated in the pathogenesis of various human diseases including Type II diabetes, Alzheimer's disease, bipolar disorder, inflammation and cancer. Consequently it is recognized as an attractive target for the development of new drugs. In the present study, we investigated the effect of both pharmacological and genetic inhibition of GSK-3 in two different renal cancer cell lines. We have shown potent anti-proliferative activity of 9-ING-41, a maleimide-based GSK-3 inhibitor. The anti-proliferative activity is most likely caused by G0-G1 and G2-M phase arrest as evident from cell cycle analysis. We have established that inhibition of GSK-3 imparted a differentiated phenotype in renal cancer cells. We have also shown that GSK-3 inhibition induced autophagy, likely as a result of imbalanced energy homeostasis caused by impaired glucose metabolism. Additionally, we have demonstrated the antitumor activity of 9-ING-41 in two different subcutaneous xenograft RCC tumor models. To our knowledge, this is the first report describing autophagy induction due to GSK-3 inhibition in renal cancer cells

    Matter effects and CP violating neutrino oscillations with non-decoupling heavy neutrinos

    Get PDF
    The evolution equation for active and sterile neutrinos propagating in general anisotropic or polarized background environment is found and solved for a special case when heavy neutrinos do not decouple, resulting in non-unitary mixing among light neutrino states. Then new CP violating neutrino oscillation effects appear. In contrast to the standard unitary neutrino oscillations these effects can be visible even for two flavour neutrino transitions and even if one of the elements of the neutrino mixing matrix is equal to zero. They do not necessarily vanish with δm20\delta m^{2} \to 0 and they are different for various pairs of flavour neutrino transitions (νeνμ\nu_e \to \nu_\mu), (νμντ\nu_\mu \to \nu_\tau), (ντνe\nu_\tau \to \nu_e). Neutrino oscillations in vacuum and Earth's matter are calculated for some fixed baseline experiments and a comparison between unitary and non-unitary oscillations are presented. It is shown, taking into account the present experimental constraints, that heavy neutrino states can affect CP and T asymmetries. This is especially true in the case of νμντ\nu_\mu \to \nu_\tau oscillations.Comment: 18 pages, 6 fig

    Relative Contributions of Intrinsic Structural–Functional Constraints and Translation Rate to the Evolution of Protein-Coding Genes

    Get PDF
    A long-standing assumption in evolutionary biology is that the evolution rate of protein-coding genes depends, largely, on specific constraints that affect the function of the given protein. However, recent research in evolutionary systems biology revealed unexpected, significant correlations between evolution rate and characteristics of genes or proteins that are not directly related to specific protein functions, such as expression level and protein–protein interactions. The strongest connections were consistently detected between protein sequence evolution rate and the expression level of the respective gene. A recent genome-wide proteomic study revealed an extremely strong correlation between the abundances of orthologous proteins in distantly related animals, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. We used the extensive protein abundance data from this study along with short-term evolutionary rates (ERs) of orthologous genes in nematodes and flies to estimate the relative contributions of structural–functional constraints and the translation rate to the evolution rate of protein-coding genes. Together the intrinsic constraints and translation rate account for approximately 50% of the variance of the ERs. The contribution of constraints is estimated to be 3- to 5-fold greater than the contribution of translation rate

    Emission decay and energy transfer in Yb/Tm Y-codoped fibers based on nano-modified glass

    Get PDF
    We report the results of an experimental investigation and theoretical analysis of luminescence decay in Yb/Tm Y-codoped fibers based on nano-modified glass. Based on the experimental results, numerical simulations allowed us to estimate the energy transfer efficiency between Yb3+ and Tm3+ ions. It was shown that yttria enhances the Yb/Tm energy transfer making fibers with Y-codoping a promising candidate for the development of light sources for laser applications and up-conversion emitters for visualization applications. These fibers demonstrate energy transfer efficiency of ∼50%, which makes them attractive for diode-pumping of Yb-ions at a wavelength of 975 nm
    corecore