8 research outputs found

    Replacing Animal-Based Proteins with Plant-Based Proteins Changes the Composition of a Whole Nordic Diet-A Randomised Clinical Trial in Healthy Finnish Adults

    Get PDF
    Increased consumption of plant-based foods and decreased consumption of animal-based foods is recommended for healthy diets and sustainable food production. We investigated the effects of partial replacement of dietary animal proteins with plant-based ones on intake of energy-yielding nutrients, fibre, and plasma lipoproteins. This 12-week randomised clinical intervention comprised 107 women and 29 men (20-69 years) in three diet groups with different dietary protein compositions ("ANIMAL": Animal 70%/plant 30%; "50/50": Animal 50%/plant 50%; "PLANT": Animal 30%/plant 70%; all: Protein intake 17 E%). Nutrient intakes were assessed by 4-day food records. Saturated fat intake (E%) was lower and polyunsaturated fatty acid intake (E%) higher in the PLANT and 50/50 groups compared to the ANIMAL group (p 0.05). Replacing animal protein with plant protein sources in the diet led to an increased fibre intake and improved dietary fat quality as well as blood lipoprotein profile. Flexitarian diets could provide healthy and more sustainable alternatives for the current, predominantly animal-based diets.Peer reviewe

    Replacing dietary animal-source proteins with plant-source proteins changes dietary intake and status of vitamins and minerals in healthy adults : a 12-week randomized controlled trial

    Get PDF
    Purpose A shift towards more plant-based diets promotes both health and sustainability. However, controlled trials addressing the nutritional effects of replacing animal proteins with plant proteins are lacking. We examined the effects of partly replacing animal proteins with plant proteins on critical vitamin and mineral intake and statuses in healthy adults using a whole-diet approach. Methods Volunteers aged 20-69 years (107 female, 29 male) were randomly allocated into one of three 12-week intervention groups with different dietary protein compositions: ANIMAL: 70% animal-source protein/30% plant-source protein; 50/50: 50% animal/50% plant; PLANT: 30% animal/70% plant; all with designed protein intake of 17 E%. We analysed vitamin B-12, iodine, iron, folate, and zinc intakes from 4-day food records, haemoglobin, ferritin, transferrin receptor, folate, and holotranscobalamin II from fasting blood samples, and iodine from 24-h urine. Results At the end point, vitamin B-12 intake and status were lower in PLANT than in 50/50 or ANIMAL groups (PPeer reviewe
    corecore