8 research outputs found

    Control of the Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) with entomopathogenic fungi

    No full text
    The beetle Alphitobius diaperinus (Panzer), considered a worldwide pest in the poultry industry, is difficult to control and it is a vector for pathogens. The objective of this study was to evaluate the biological control of the lesser mealworm, by strains of fungi Beauveria bassiana, Cladosporium sp. and Trichoderma sp. Larvae and adults of the A. diaperinus were inoculated with suspensions of conidia in the concentration of 10(7) conídia.mL-1. The B. bassiana isolate caused higher insect mortality as compared to Cladosporium sp. and Trichoderma sp. isolates, with the larvae being more susceptible than adults. The entomopathogenicity of B. bassiana was further evaluated with 200 larvae and 200 adults of A. diaperinus inoculated with suspensions 10(6), 10(7), and 10(8) conidia.mL-1, and observed for ten days. Larvae mortality started at the fourth day at the lowest concentration, and the adult mortality was only observed on the sixth day at the concentration of 10(8) conidia.mL-1

    Review on modelling approaches based on computational fluid dynamics for biomass pyrolysis systems

    No full text
    Modelling is a complex task combining elements of knowledge in the field of computer science, mathematics and natural sciences (fluid dynamics, mass and heat transfer, chemistry). In order to correctly model the process of biomass thermal degradation, in-depth knowledge of multi-scale unit processes is necessary. A biomass conversion model can be divided into three main submodels depending on the scale of the unit processes: the molecular model, single particle model and reactor model. Molecular models describe the chemical changes in the biomass constituents. Single-particle models correspond to the description of the biomass structure and its influence on the thermo-physical behaviour and the subsequent reactions of the compounds released during decomposition of a single biomass particle. The largest scale submodel and at the same time, the most difficult to describe is the reactor model, which describes the behaviour of a vast number of particles, the flow of the reactor gases as well as the interaction between them and the reactor. This chapter contains a basic explanation about which models are currently available and how they work from a practical point of view

    Bartonella infections in cats and dogs including zoonotic aspects

    No full text
    corecore