14 research outputs found

    Multi-messenger characterization of Mrk 501 during historically low X-ray and γ\gamma-ray activity

    No full text
    International audienceWe study the broadband emission of the TeV blazar Mrk501 using multi-wavelength (MWL) observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi-LAT, NuSTAR, Swift, GASP-WEBT, and OVRO. During this period, Mrk501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Despite the low activity, significant flux variations are detected at all wavebands, with the highest variations occurring at X-rays and VHE γ\gamma-rays. A significant correlation (>3σ\sigma) between X-rays and VHE γ\gamma-rays is measured, supporting leptonic scenarios to explain the variable parts of the spectral energy distribution (SED), also during low activity states. Extending our data set to 12-years (from 2008 to 2020), we find significant correlations between X-rays and HE γ\gamma-rays, indicating, for the first time, a common physical origin driving the variability between these two bands. We additionally find a correlation between HE γ\gamma-rays and radio, with the radio emission lagging the HE γ\gamma-ray emission by more than 100 days. This is consistent with the γ\gamma-ray emission zone being located upstream of the radio-bright regions of the Mrk501 jet. Furthermore, Mrk501 showed a historically low activity in both X-rays and VHE γ\gamma-rays from mid-2017 to mid-2019 with a stable VHE flux (>2TeV) of 5% the emission of the Crab Nebula. The broadband SED of this 2-year long low-state, the potential baseline emission of Mrk501, can be adequately characterized with a one-zone leptonic model, and with (lepto)-hadronic models that fulfill the neutrino flux constraints from IceCube. We explore the time evolution of the SED towards the historically low-state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock

    Multi-messenger characterization of Mrk 501 during historically low X-ray and γ\gamma-ray activity

    No full text
    We study the broadband emission of the TeV blazar Mrk501 using multi-wavelength (MWL) observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi-LAT, NuSTAR, Swift, GASP-WEBT, and OVRO. During this period, Mrk501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Despite the low activity, significant flux variations are detected at all wavebands, with the highest variations occurring at X-rays and VHE γ\gamma-rays. A significant correlation (>3σ\sigma) between X-rays and VHE γ\gamma-rays is measured, supporting leptonic scenarios to explain the variable parts of the spectral energy distribution (SED), also during low activity states. Extending our data set to 12-years (from 2008 to 2020), we find significant correlations between X-rays and HE γ\gamma-rays, indicating, for the first time, a common physical origin driving the variability between these two bands. We additionally find a correlation between HE γ\gamma-rays and radio, with the radio emission lagging the HE γ\gamma-ray emission by more than 100 days. This is consistent with the γ\gamma-ray emission zone being located upstream of the radio-bright regions of the Mrk501 jet. Furthermore, Mrk501 showed a historically low activity in both X-rays and VHE γ\gamma-rays from mid-2017 to mid-2019 with a stable VHE flux (>2TeV) of 5% the emission of the Crab Nebula. The broadband SED of this 2-year long low-state, the potential baseline emission of Mrk501, can be adequately characterized with a one-zone leptonic model, and with (lepto)-hadronic models that fulfill the neutrino flux constraints from IceCube. We explore the time evolution of the SED towards the historically low-state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock

    Performance of the joint LST-1 and MAGIC observations evaluated with Crab Nebula data

    No full text
    International audienceAims. LST-1, the prototype of the Large-Sized Telescope for the upcoming Cherenkov Telescope Array Observatory, is concluding its commissioning in Observatorio del Roque de los Muchachos on the island of La Palma. The proximity of LST-1 (Large-Sized Telescope 1) to the two MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescopes permits observations of the same gamma-ray events with both systems. Methods. We describe the joint LST-1+MAGIC analysis pipeline and use simultaneous Crab Nebula observations and Monte Carlo simulations to assess the performance of the three-telescope system. The addition of the LST-1 telescope allows the recovery of events in which one of the MAGIC images is too dim to survive analysis quality cuts. Results. Thanks to the resulting increase in the collection area and stronger background rejection, we find a significant improvement in sensitivity, allowing the detection of 30% weaker fluxes in the energy range between 200 GeV and 3 TeV. The spectrum of the Crab Nebula, reconstructed in the energy range ~60 GeV to ~10 TeV, is in agreement with previous measurements

    Performance of the joint LST-1 and MAGIC observations evaluated with Crab Nebula data

    No full text
    International audienceAims. LST-1, the prototype of the Large-Sized Telescope for the upcoming Cherenkov Telescope Array Observatory, is concluding its commissioning in Observatorio del Roque de los Muchachos on the island of La Palma. The proximity of LST-1 (Large-Sized Telescope 1) to the two MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescopes permits observations of the same gamma-ray events with both systems. Methods. We describe the joint LST-1+MAGIC analysis pipeline and use simultaneous Crab Nebula observations and Monte Carlo simulations to assess the performance of the three-telescope system. The addition of the LST-1 telescope allows the recovery of events in which one of the MAGIC images is too dim to survive analysis quality cuts. Results. Thanks to the resulting increase in the collection area and stronger background rejection, we find a significant improvement in sensitivity, allowing the detection of 30% weaker fluxes in the energy range between 200 GeV and 3 TeV. The spectrum of the Crab Nebula, reconstructed in the energy range ~60 GeV to ~10 TeV, is in agreement with previous measurements

    Performance of the joint LST-1 and MAGIC observations evaluated with Crab Nebula data

    No full text
    International audienceAims. LST-1, the prototype of the Large-Sized Telescope for the upcoming Cherenkov Telescope Array Observatory, is concluding its commissioning in Observatorio del Roque de los Muchachos on the island of La Palma. The proximity of LST-1 (Large-Sized Telescope 1) to the two MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescopes permits observations of the same gamma-ray events with both systems. Methods. We describe the joint LST-1+MAGIC analysis pipeline and use simultaneous Crab Nebula observations and Monte Carlo simulations to assess the performance of the three-telescope system. The addition of the LST-1 telescope allows the recovery of events in which one of the MAGIC images is too dim to survive analysis quality cuts. Results. Thanks to the resulting increase in the collection area and stronger background rejection, we find a significant improvement in sensitivity, allowing the detection of 30% weaker fluxes in the energy range between 200 GeV and 3 TeV. The spectrum of the Crab Nebula, reconstructed in the energy range ~60 GeV to ~10 TeV, is in agreement with previous measurements

    Dark Matter Line Searches with the Cherenkov Telescope Array

    No full text
    International audienceMonochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating or decaying dark matter particles that could relatively easily be distinguished from astrophysical or instrumental backgrounds. We provide an updated assessment of the sensitivity of the Cherenkov Telescope Array (CTA) to such signals, based on observations of the Galactic centre region as well as of selected dwarf spheroidal galaxies. We find that current limits and detection prospects for dark matter masses above 300 GeV will be significantly improved, by up to an order of magnitude in the multi-TeV range. This demonstrates that CTA will set a new standard for gamma-ray astronomy also in this respect, as the world's largest and most sensitive high-energy gamma-ray observatory, in particular due to its exquisite energy resolution at TeV energies and the adopted observational strategy focussing on regions with large dark matter densities. Throughout our analysis, we use up-to-date instrument response functions, and we thoroughly model the effect of instrumental systematic uncertainties in our statistical treatment. We further present results for other potential signatures with sharp spectral features, e.g.~box-shaped spectra, that would likewise very clearly point to a particle dark matter origin

    Galactic transient sources with the Cherenkov Telescope Array

    No full text
    International audienceA wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low-mass and high-mass X-ray binaries containing compact objects (e.g., novae, microquasars, transitional millisecond pulsars, supergiant fast X-ray transients), isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array (CTA) and the prospects for studying them with Target of Opportunity observations. We show that CTA will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. We also discuss the multi-wavelength synergies with other instruments and large astronomical facilities

    Dark Matter Line Searches with the Cherenkov Telescope Array

    No full text
    International audienceMonochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating or decaying dark matter particles that could relatively easily be distinguished from astrophysical or instrumental backgrounds. We provide an updated assessment of the sensitivity of the Cherenkov Telescope Array (CTA) to such signals, based on observations of the Galactic centre region as well as of selected dwarf spheroidal galaxies. We find that current limits and detection prospects for dark matter masses above 300 GeV will be significantly improved, by up to an order of magnitude in the multi-TeV range. This demonstrates that CTA will set a new standard for gamma-ray astronomy also in this respect, as the world's largest and most sensitive high-energy gamma-ray observatory, in particular due to its exquisite energy resolution at TeV energies and the adopted observational strategy focussing on regions with large dark matter densities. Throughout our analysis, we use up-to-date instrument response functions, and we thoroughly model the effect of instrumental systematic uncertainties in our statistical treatment. We further present results for other potential signatures with sharp spectral features, e.g.~box-shaped spectra, that would likewise very clearly point to a particle dark matter origin

    Galactic transient sources with the Cherenkov Telescope Array

    No full text
    International audienceA wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low-mass and high-mass X-ray binaries containing compact objects (e.g., novae, microquasars, transitional millisecond pulsars, supergiant fast X-ray transients), isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array (CTA) and the prospects for studying them with Target of Opportunity observations. We show that CTA will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. We also discuss the multi-wavelength synergies with other instruments and large astronomical facilities
    corecore